|
|
|
|
|
|
|
|
log_jacobian(self,
model_param)
compute the log of the jacobian of f, evaluated at f(x)= model_param |
source code
|
|
|
|
log_jacobian_grad(self,
model_param)
compute the drivative of the log of the jacobian of f, evaluated at
f(x)= model_param |
source code
|
|
|
|
gradfactor(self,
model_param,
dL_dmodel_param)
df(opt_param)_dopt_param evaluated at self.f(opt_param)=model_param,
times the gradient dL_dmodel_param, |
source code
|
|
|
|
| gradfactor_non_natural(self,
model_param,
dL_dmodel_param) |
source code
|
|
|
|
initialize(self,
f)
produce a sensible initial value for f(x) |
source code
|
|
|
|
plot(self,
xlabel='transformed $\\theta$',
ylabel='$\\theta$',
axes=None,
*args,
**kw) |
source code
|
|
|
|
|
|
|
|
|
Inherited from object:
__delattr__,
__format__,
__getattribute__,
__hash__,
__init__,
__reduce__,
__reduce_ex__,
__setattr__,
__sizeof__,
__subclasshook__
|