|
|
|
|
|
log_jacobian(self,
model_param)
compute the log of the jacobian of f, evaluated at f(x)= model_param |
source code
|
|
|
log_jacobian_grad(self,
model_param)
compute the drivative of the log of the jacobian of f, evaluated at
f(x)= model_param |
source code
|
|
|
gradfactor(self,
model_param,
dL_dmodel_param)
df(opt_param)_dopt_param evaluated at self.f(opt_param)=model_param,
times the gradient dL_dmodel_param, |
source code
|
|
|
gradfactor_non_natural(self,
model_param,
dL_dmodel_param) |
source code
|
|
|
initialize(self,
f)
produce a sensible initial value for f(x) |
source code
|
|
|
plot(self,
xlabel=' transformed $\\theta$ ' ,
ylabel=' $\\theta$ ' ,
axes=None,
*args,
**kw) |
source code
|
|
|
|
|
|
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__init__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|