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MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours

Answer THREE of the four questions.

All questions carry equal weight. Figures in square brackets indicate the per-
centage of available marks allocated to each part of a question.
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1. This question concerns general concepts in machine learning.

a) Bayes’ rule is used in many contexts in machine learning.

(i) Provide a definition of Bayes’ rule. You should include mathematical formulae,
and define any variables used. [10%]

answer:

Bayes’ rule is defined as P (y|x) = P (y)P (x|y)
P (x)

. In this formulation y is the latent

quantity we wish to infer and x is the observed evidence (in machine learning
– more generally, they’re both just random variables). Lose 2 marks if missing
denominator. Lose 2 if x and y aren’t defined (loosely).

(ii) Define the following components in Bayes’ rule – posterior, likelihood, prior,
marginal likelihood – and briefly describe their purpose (1-2 sentences for each).

[20%]

answer:

The components are posterior = prior × likelihood
marginal likelihood.

• the prior embodies our initial intutions about what latent values we expect
to see, before observing any data

• the likelihood is the probability of the observed data given the latent values

• the marginal likelihood is the probability of the data under any setting of
the latent values, i.e., marginalising out the latent values

• the posterior is the quantity we’re interested in, which combines both the
prior and the likelihood. This way our initial beliefs (prior) are moderated
by the evidence seen in the data (likelihood).

Equal marks each.

(iii) Provide two examples where Bayes’ rule is used in machine learning, and de-
scribe why Bayes’ rule is used in this setting. [15%]

answer:

Here are some possibilities:

• model estimation, where we’re interested in the posterior p(θ|x), where θ
are the model parameters and x are the training examples. This is used as
it’s much more straightforward to model the likelihood and prior terms (i.e.,
using Bayes’ rule) than to model the posterior directly. Here straightforward
means modelling convenience and also mathematical tractability.

• generative models of classification, e.g., mixtures of gaussians, naive Bayes
or similar. In these settings we model p(C|x) where C is the class and x
is the data instance. In this case it’s simpler to model the posterior as a
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likelihood and a prior term, which leads to a simple form of the posterior
and a closed-form training algorithm. Conversely, modelling the posterior
directly (e.g., as done in logistic regression) requires the use of a non-linear
activation function, and necessitates an iterative gradient based training
algorithm.

• there are others, but we haven’t covered these in any depth in class. Full
marks for an alternative feasible answer.

7.5 marks for each

b) What does the term marginalise mean in relation to probability distributions? You
should consider both the discrete and continuous settings, and provide mathematical
formulae to support your answer. [15%]

answer:

This means to remove the effect of a random variable from a joint distribution over
multiple RVs, resulting in the marginal distribution. For discrete distributions (PMFs),
this means summing over the variable,

p(x) =
∑
y

p(x, y)

and for continuous distributions (PDFs), this means integrating,

p(x) =

∫
y

p(x, y)dy

-3 if only consider one setting, but otherwise correct.

c) The Binomial-Beta is said to be an example of a conjugate prior relationship.

(i) Give a definition of a conjugate prior, and motivate why conjugate priors are
desirable. [15%]

(ii) Prove that conjugacy holds for the Binomial and Beta distributions. Show your
working. [25%]

For your reference, the Binomial distribution is defined as

P (k, n|u) =
(
n

k

)
uk(1− u)n−k

where k is the number of successes after n trials (both positive integers), and u is the
binomial parameter (real number between 0 and 1). The Beta distribution is defined
as

P (u|α, β) = 1

B(α, β)
uα−1(1− u)β−1
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where u is a real number between 0 and 1 and α and β are the Beta parameters. The
function B(·) is a normalising constant.

answer:

A conjugate prior is a distribution which has the property that the posterior distribution
(which you get by combining the prior and likelihood) has the same form as the prior.
This is desirable as it means that (usually) inference is straightforward, as we only
need to deal with one distribution. (8 marks for definition, 7 marks for reason)

The proof goes as follows – express the likelihood and the prior, take their product to
get the posterior, and then express as a beta distribution.

B(k, n|p) ∝ pk(1− p)n−k likelihood

β(p|α, β) ∝ pα−1(1− p)β−1 prior

P (p|k, n, α, β) ∝ B(k, n|p)× β(p|α, β) posterior

∝ pk+α−1(1− p)n−k+β−1

∝ β(p|k + α, n− k + β)

Note that we use proportional to in order to discard irrelevant scaling factors, including
the denominator term (marginal likelihood) in Bayes’ rule.

Mark breakdown – half marks for formulating the posterior correctly; full marks for
the final correct answer (which can be in text). Lose 5 marks for each simple mistake,
e.g., with normalisation constants.
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2. This question is based on the following data. We are trying to predict whether or not it
will rain, and have identified two features which might be important—whether the sky is
clear or cloudy, and whether or not we hear birds singing. Over three days, we observed the
following:

1. cloudy sky; birds singing; rain

2. clear sky; birds singing; no rain

3. clear sky; birds quiet; rain

a) We have decided to model the data using the perceptron algorithm.

(i) Illustrate this data using a graph, denoting each day as a point. Draw a
separating hyperplane on the graph and label the regions for the two classes.

[10%]

(ii) State the weight update rule used in the perceptron algorithm. [5%]

(iii) Now apply the perceptron algorithm for training the model parameters. First,
represent your training data as a matrix, X, for the data points and vector t
for their target values (+1 = rain and -1 = no rain). Now perform just one
pass of the perceptron algorithm over the training set, showing your working
and the final parameter values. Don’t forget to include a bias term. [15%]

(iv) The following day there is a cloudy sky and the birds are quiet. What is your
model’s prediction (i.e., rain or not)? Include your working. [5%]

answer:

1. Something like the figure below – 5 points for drawing the points (n.b. flipping
either axis is ok), and 5 points for drawing a line that splits the +s from the -s.

birds singing?

sk
y

cl
ou

dy
?

2. The update rule is w← w + tixi.

3. First, we represent the data and the target values. We incorporate the bias term
using the first columns of 1s.
x0 x1 x2 t
1 1 1 1
1 0 1 -1
1 0 0 1
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Now starting with parameters w = [000].

(a) instance 1, w = [0 0 0], wTx = 0, y(x) = 1, no error hence no update

(b) instance 2, w = [0 0 0], wTx = 0, y(x) = 1, an error hence update
w+ = [−1 0 − 1]

(c) instance 3, w = [−1 0 − 1], wTx = −1, y(x) = −1, an error hence update
w+ = [1 0 0]

The final value is w = [0 0 − 1].
This can be presented in a number of ways. 5 marks = final answer correct. 5
marks = show input data in a sensible way. 5 marks = show iterative updates
with changing w. No marks docked if using a sign algorithm that assigns 0 to -1,
although this will lead to a different end result.

4. The data point is x = [1 1 0], and therefore y(x) = sign(0) = 1. So it will predict
rain. No marks docked if using a sign algorithm that assigns 0 to -1, nor if the
answer here is consistent with the answer to part 2 above.

b) It turns out on the fourth day that it doesn’t rain. We now elect to include this new
example (cloudy sky; birds quiet; no rain) into our training set and re-train our model.

(i) The above model will no longer be appropriate for this dataset. Justify why
this is the case. [10%]

(ii) Would you be able to solve the problem using radial basis functions? If so, how
many RBFs are needed and where could they be placed? Please justify your
answer, either way. [20%]

answer:

1. The data set is no longer linearly separable (5 marks). If we draw the new dataset,
we have

birds singing?

sk
y

cl
ou

dy
?

which is the classic XOR problem. There exists no straight line that can discriminate
between the classes. We will always get one point incorrect (5 marks).

2. Yes (5 marks). RBFs allow for non-linear decision boundaries by measuring the
euclidean distance to a given point. This gives rise to curved contours and generally
curved decision boundaries based on which centre is closer to each point. (7 marks)
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You can solve it using two RBFs, which need to be placed at or near two points of
the same class (either both +s or both -s). (8 marks)

c) Support Vector Machines (SVMs) refine the perceptron by including the notion of
margin of separation.

(i) Illustrate the concept of the separating margin using a diagram assuming binary
classification with two dimensional input data. Now highlight all the support
vectors, and annotate the margin. State which points violate the margin con-
straints (ensure you include a few). [15%]

answer:

Something like this:

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(Bishop, PRML, Chapter 7)

Note that the circled points are the SVs, ξ > 0 shows various margin violations,
and the parallel lines for y = ±1 show the decision boundary.
Marks assigned: correctly identifies SVs (5 marks); margin annotated between
SVs and boundary (5 marks); shows points on the wrong side of the decision
boundary annotated as violating the constraints (5 marks).

(ii) What is the loss function being minimised by the soft-margin SVMs? Include
the mathematical formula. How does this differ from the zero-one loss and
logistic loss? Provide a diagram to illustrate your answer. [20%]

answer:

It’s the hinge loss, which is defined as −min(0, 1 − ty(x)) where t is the
target class, and y(x) = wTx is the discriminant value. See figure, it’s the
blue solid line. It differs from 0-1 loss (green dashes) at it penalises correct
but unconfident classifications, and has a rising loss based on the magnitude
of mistake. Note that 0-1 loss is discontinuous, where hinge and log loss are
not. Compared to logistic loss (red dotted), log(1 + exp(ty(x))), it is quite
similar, but is less harsh on bad misclassifications and is rewards all confident
classifications (y > 1) equally while logistic loss gradually reduces towards zero
at the asymptote. This means logistic loss will take (slightly) more account of
outliers on the correct side of the decision boundary.
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Note that in the figure logistic loss has been scaled by a factor of log(2). This
isn’t important, it just makes the graph easier to interpret.
10 marks for stating hinge loss including formula. 5 marks for comparison,
stating at least one valid difference each between HL and 01 and HL and LL.
5 marks for diagram.
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3. This question concerns regression and the Bayesian approach to regression with basis func-
tions.

a) For each pair of terms below define and contrast the two terms. Use at least one
example to illustrate your answer.

(i) overdetermined and underdetermined systems [15%]answer:

Overdetermined systems have more data than parameters. In the case of gen-
eralised linear models, if you try and solve the system exactly, each data point
leads to a set of simultaneous equations and each parameter an unknown.
In overdetermined systems you have more equations than unknowns. A one
dimensional linear regression problem, without noise, and having more than
two observations is over determined. Underdetermined systems have more pa-
rameters than data. When trying to solve the system exactly you have fewer
equations than unknowns. A one dimensional linear regression problem with
only one data point is an underdetermined system.

(ii) epistemic and aleatoric uncertainty [15%]answer:

Epistemic uncertainty is our uncertainty about events the outcome of which
could be in principle known. For example watching a recording of a football
match which has already finished involves epistemic uncertainty about the re-
sult. Aleatoric uncertainty is uncertainty about events which is not knowable.
For example, watching a football match live leads to aleatoric uncertainty about
the result.

b) A typical linear model could have the form

ti = mxi + c+ εi

where ti is the regression target observation, xi is the input location and εi is the
noise. All are associated with the ith observation.

(i) Write the form of the basis set for the ith data point, φi, such that this model
can be written:

ti = w>φi + εi.

[5%]answer:

The basis here is simply φi = [1 xi]
> where w1 = c and w2 = m.

(ii) The linear model is a 1st order polynomial. What would the basis, φi, be for
a 4th order polynomial? [5%]answer:

The basis here is simply φi = [1 xi x2i x3i x4i ]
>

.
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c) In a regression problem we are given a vector of real valued targets, t, consisting of N
observations t1 . . . tN which are associated with a unidimensional input x1 . . . xN . We
are to perform the regression by minimizing the following error function with respect
to w

E(w) =
N∑
i=1

(ti −w>φi)
2.

Write down the likelihood that corresponds to this error function, introducing any
additional parameters as necessary. Describe how the error function is related to the
likelihood. [20%]answer:

The error function corresponds to a Gaussian likelihood. The additional parameter
that is required is the variance of the Gaussian which corresponds to the noise level,
denoting this by σ2 gives us the following likelihood

p(t|t,w, σ2) =
1

(2πσ2)N/2
exp

(
− 1

2σ2

N∑
i=1

(ti −w>φi)
2

)
.

The error function, up to a scaling and a value that is constant in w, is the negative
logarithm of the likelihood.

d) Consider the following Gaussian prior density for w,

p(w) =
1

(2πα)
k
2

exp

(
− 1

2α
w>w

)
where k is the length of the vector w and α is the variance of the prior.

(i) Multiply the prior by the likelihood from (c). Show that the result is of the
form of an exponentiated quadratic, and describe why that means the posterior
density for w is Gaussian. [20%]answer:

Here we need to use Bayes’s rule. The posterior density is given by

p(w|t,X, σ2) ∝ p(t|X,w, σ2)p(w),

the logarithm of which can be written as

log p(w|t,X, σ2) = − 1

2σ2

N∑
i=1

(ti −w>φi)
2 − 1

2α
w>w + const

where the constant represents terms which don’t include w. Even at this stage
it is clear that this expression contains terms that are only quadratic or linear
in w. When we re-exponentiate to get the posterior density, the only density
that is the exponential of a quadratic is the multivariate Gaussian density. So
this must be the multivariate Gaussian.
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(ii) Show that the mean, µw, and covariance, Cw, of the posterior density are
given by

Cw =

[
α−1I+ σ−2

N∑
i

φiφ
>
i

]−1

µw = Cwσ
−2

N∑
i=1

tiφi

[20%]answer:

When the brackets from the previous part are multiplied out and we collect
quadratic and linear terms in w we have

log p(w|t,X, σ2) = −1

2
w>

[
α−1I+ σ−2

N∑
i

φiφ
>
i

]
w+σ−2

N∑
i=1

tiφ
>
i w+const

The exponent of a multivariate Gaussian density takes the form

−1

2
(w − µw)

>C−1w (w − µw)

which multiplies out to

−1

2
w>C−1w w + µ>wC

−1
w w + const.

This needs to be matched to the log posterior we multiplied out above. Match-
ing the quadratic forms between the two expressions implies that

Cw =

[
α−1I+ σ−2

N∑
i

φiφ
>
i

]−1
and

C−1w µw = σ−2
N∑
i=1

tiφi

so

µw = Cwσ
−2

N∑
i=1

tiφi
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4. This question concerns the concepts behind data modelling such as generalization and
model selection. In your answers, when it is appropriate, you may want to make use of the
regression example we saw in the lectures and lab class involving the gold medal winning
100m times from the Olympic games between 1896 and 2008.

a) Give short definitions for the following terms associated with a model fitting and
generalisation capability.

(i) overfitting [5%]

answer:

Overfitting is when a model with too greater complexity is applied to a data
set. The result is that the training error is low, but when the model is applied
to previously unseen test data, the error is high. [For example in the olympics
data if a too higher order polynomial is fitted the regression line goes through
all the data points but doesn’t generalise well between them].

(ii) extrapolation [5%]

answer:

Extrapolation is error that arises when moving beyond the region of the data.
[For example, in the Olympics 100 m data set we have data up until the year
2008, predicting forward in time from this data (2012, 2016 etc) is extrapolation
— example not required for full marks]

(iii) interpolation [5%]

answer:

Predicting between training data points. [For example in the Olympics data
predicting the missing Olympics during the Second World War (1940 and 1944)
would be interpolation because they are between 1936 and 1948].

b) In this part we will cover approaches to model selection.

(i) What is a validation set? [10%]

answer:

A validation set is a portion of the training data which is not used for training
the model, but is used to estimate the test error for the purposes of model
selection. For example in the Olympics data we could hold out from 1980 to
the present day from the training data and test on these examples to evaluate
the quality of the model.
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(ii) What is the difference between hold out validation and cross validation? [20%]

answer:

Hold out validation is when a portion of the training data is selected as a
validation set and the validation set is simply ‘held out’ at the training stage
and used to estimate the test error. In cross validation the validation set is
alternated across the training data, a portion of the data is used for training, and
a portion for validation. The portions are then swapped (perhaps several times,
or even N times for leave one out cross validation) and the errors are averaged.
For example, in the olympics data hold out validation involves training only on
e.g. the first portion of the data set and testing on a later portion

(iii) What are the relative advantages and disadvantages of leave-one-out cross
validation and five fold cross validation? [25%]

answer:

Leave one out cross validation gives the best estimate of the generalization error
as it uses almost all the training data to compute each model [10 marks], and
computes the test error as an average over all data [5 marks]. Unfortunately
it increases computational complexity by N where N is the number of training
data because it needs to be done N times. Five fold cross validation is quicker
to perform as it only needs to be done five times, but it doesn’t use all the
training data to estimate the model so it can give model selection for a model
that is less complex than could be used.

c) What is the Bayesian approach to model selection and why is it less susceptible to
overfitting? [30%]

answer:

The Bayesian approach to model fitting involves integrating over the parameters rather
than optimising them out. The model selection is then done using the marginal like-
lihood (the likelihood with the parameters marginalised) rather than the likelihood.
This typically has less parameters and therefore is less susceptible to overfitting. The
reason this works is because Bayesian approaches perform model averaging, they av-
erage over many plausible solutions to the problem and give error bars, rather than
optimising one solution that can overfit.

COM6509 13



UNIVERSITY OF SHEFFIELD COM6509

END OF QUESTION PAPER
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