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The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum
mechanics should be developed, which can lead to an
explanation of the main features of complex atomic systems
without too much computation

Paul Dirac - Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character, Vol.
123, No. 792 (6 April 1929)
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An increase in computer power of at least two orders of
magnitude should occur over the next decade. Without
further research into the accuracy of force-field
potentials, future macromolecular modeling may well be
limited more by validity of the energy functions,
particularly electrostatic terms, than by technical ability
to perform the computations.

Force fields for protein simulations
JW Ponder, DA Case - Advances in protein chemistry, 2003
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Popelier Group, Manchester — UMIST and
University of Manchester

« Electron density — 3D regions
« Mapped by QCT

 Represented by spherical
harmonics
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Popelier Group, Manchester — UMIST and University of
Manchester
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Popelier Group, Manchester — UMIST and
University of Manchester

* Spherical harmonics depend
on local chemical ]
environment. T

« Sample as many
configurations for each atom.
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Popelier Group, Manchester — UMIST and
University of Manchester

e PhD — Polarizable a b
Multipolar Peptides and e
Polarizable lons in Water.

 This work formed the
basis for the ongoing work | ¢~
on a novel force field. ]

« Some forays into using
other machine learning
methods. Kriging GPRs &~ =
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Deeth Group, University of Warwick

* Ligand Field
Molecular Mechanics
— d-electrons
explicitly represented
In force fields.

Vaguely similar to
Tight Binding.

* Implemented in the
CCG MOE suite.
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Deeth Group, University of Warw

Method introduces new
functions — LFMM just for
this one system type
introduces 30+ new
parameters.

By hand with a priori
expert knowledge fitting
by hand can take 6
months.
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Multi-Objective Evolutionary Algorithms — optimize using
Genetic Algorithms, but guided by Pareto Front analysis.

Replicate fitting, and improve on fitting, in an hour!
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First example of method implemented for force field design.
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Behler Group, Ruhr-Universitat Bochum,
Germany
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Behler Group, Ruhr-Universitat Bochum,

Germany
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Reaney, Sinclair, Freeman, Dean, University

of Sheffield

 Perovskites — DFT
simulations dominate
literature. Force Field
methods could reveal more
about the dynamics of the
structures.

A need to develop new
potentials that capture the
right chemistry.
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Reaney, Sinclair, Freeman, Dean, University
of Sheffield

Multi-layer capacitors — we
know the materials but how
do we combine them?

* A machine learning problem
— permutation of
combinations of layers,
thickness of layers etc.

« Develop computational
tools for synthetic chemists.
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Reaney, Sinclair, Freeman, Dean, University
of Sheffield

 Identify places where
chemical simulation can
support and guide
synthesis.

 ldentify places where
previous machine learning
methods can aid design of
materials i.e. force field
design or materials
classification.
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