
Parametric/Median Polish Trend Removal

Before studying models for variograms (which describe small-scale or residual variation),

we discuss the removal of any large-scale variation (or trend) that might be present. In

spatial modeling, researchers have historically taken two different views on describing any

trend present. Both of these views recognize the same basic model form for the process. Be-

fore discussing the two approaches taken toward modeling any trend present, it is important

to understand the following model form used in virtually any type of nondeterministic model.

Model Form: Recall that the set of random variables {Y (s) : s ∈ R} is a random function,

with some mean and variance given by µ(s) & σ2(s) respectively. Under weak stationarity,

the mean and variance are no longer functions of the location s. However, more generally

(and realistically), nondeterministic models are assumed to have the form:

Y (s) = µ(s) + ǫ(s), s ∈ R, the region of interest.
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• The mean (or trend) function µ(s) may be a function of the location and/or of some list

of covariates. It may be expressed as a linear or nonlinear function of some regression

parameters, a generalized linear model (GLM), a generalized additive model (GAM),

or most generally may be modeled nonparametrically. One of the goals of this handout

is to introduce a nonparametric method of modeling the trend known as median polish.

As mentioned at the outset, there are two general approaches taken toward modeling the

trend and error structure in spatial processes. These are:

1. First remove the trend and perform any subsequent analysis on the resulting residuals.

2. Model the trend and error structure simultaneously. (One example of this approach is

universal kriging, discussed later in the course.)

We will take the first approach for now, and look at both parametric and nonparametric

methods of trend removal.

Example: Consider the following data on arsenic concentrations taken over 21 locations

with corresponding elevations. Suppose we let:

z = the arsenic concentration measurements (in ppb),

w = the corresponding elevations (in feet),

x = s1 = the x-coordinate of the measurement, and

y = s2 = the y-coordinate of the measurement.

1. If there were a roughly linear trend in the x-direction, and a linear relationship be-

tween arsenic levels and elevations, we might try modeling the mean function with the

regression model:
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2. Suppose there were linear trends in both the x- and y-directions which were interac-

tive, and an exponentially decreasing relationship between arsenic levels and elevation.

What mean model might we try fitting to these data?

3. A greyscale plot (shown to the right)

revealed a definite SE-NW trend in the

arsenic data. How might we remove this

trend with a regression model on the

mean function?
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Assuming that elevation is not related

to log arsenic concentration level, we

might fit the model:

µ(s) = β0 + β1x(s) + β2y(s).

Fitting this in R via the lm command

as given below, gave the output which

follows:

arsenic.reg <- lm(log(conc) ~ x+y) # Performs linear regression of the log con-

# centrations on the x- and y-coordinates.

summary(arsenic.reg) # Summarizes the regression fit.

Coeffieicnts: Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.710e+03 2.317e+03 1.170 0.257

x -2.092e-03 1.311e-03 -1.596 0.128

y -5.004e-04 1.028e-03 -0.487 0.632

Residual standard error: 1.808 on 18 degrees of freedom

Multiple R-squared: 0.4651, Adjusted R-squared: 0.4057

F-statistic: 7.826 on 2 and 18 DF, p-value: 0.003584

cor(x,y)

[1] -0.957679
What does this model fit tell you?
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4. Since the trend is really in neither the E-W or N-S direction as x and y are oriented,

but in a diagonal direction running from SE-NW, we might be better off creating a

new explanatory variable along this direction. For example, since the upper left-hand

corner of the region sampled is roughly at coordinates: (1075951, 905157), we might

create a variable which is the distance from this point. This was done via R, giving

a new variable called “newx”. A scatterplot of the arsenic concentrations versus newx

was then created to examine the nature of the trend along the NW-SE diagonal. The

plot is given to the right, with the corresponding R code shown below.

newx <- sqrt((x-min(x))**2 +

(y-max(y))**2) + 1

plot(newx,conc,ylab="Concentration",

xlab="Distance from NW Corner",

main="Arsenic Concentration vs.

Rotated Trend Axis",cex.main=1.6,

cex.lab=1.6,cex.axis=1.5,cex=1.3,

mgp=c(2.7,1,0))
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In viewing this scatterplot, what type of

function might you suggest to remove the trend?

Nonlinear least squares was used via the nls function in R to fit the model given

above to these data. The R code and output are given below, and the resulting model

fit is plotted through the scatterplot for comparison.

nlfit <- nls(conc ~ (newx**(alpha-1))*exp(-newx/beta),

start=list(alpha=2.17, beta=855))

summary(nlfit)

Parameters:

Estimate Std. Error t value Pr(>|t|)

alpha 2.17681 0.03979 54.709 < 2e-16 ***

beta 718.39128 104.80584 6.854 1.53e-06 ***

Residual standard error: 246.6 on 19 degrees of freedom

Number of iterations to convergence: 9

Achieved convergence tolerance: 4.77e-06
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val <- seq(0,5000,5)

concdens <- (val**

(summary(nlfit)$coef[1,1]-1))*

exp(-val/summary(nlfit)$coef[2,1])

lines(val,concdens)
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• All of what has been considered above

in the arsenic example are examples of

fitting parametric models to the mean

function in an effort to detrend the data

before attempting any analysis of the

spatial correlation structure.

• If there are trends in the data which perhaps are difficult to model in some straight-

forward functional way, an alternative approach to removing the trend is nonpara-

metric trend removal. One such method which will be discussed in what follows is

median polish.

Median Polish : Median polish is the name of an iterative algorithm for removing any

trends present by computing medians for various coordinates on the spatial domain R. This

definition will seem vague until the formal algorithm is introduced and run.

• Typically, median polish will be used for lattice data, as will be seen shortly, but one

could use these techniques with non-lattice data by overlaying a grid on the observa-

tions.

The Algorithm: The median polish algorithm assumes the following decomposition of the

random process Z:
Z(s) = µ(s)

︸ ︷︷ ︸

grand effect + row(s) + column(s)

+ ǫ(s), (1)

and then proceeds by estimating the “grand” effect, the row effects (one for each row), and

the column effects (one for each column). The steps of the algorithm are given below:

1. Take the median of each row and record the value to the side of the row. Subtract the

row median from each point in that particular row.

2. Compute the median of the row medians, and record the value as the grand effect.

Subtract this grand effect from each of the row medians.

3. Take the median of each column and record the value beneath the column. Subtract

the column median from each point in that particular column.

4. Compute the median of the column medians, and add the value to the current grand

effect. Subtract this addition to the grand effect from each of the column medians.

5. Repeat steps 1-4 until no changes occur with the row or column medians.
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It should be emphasized that through the course of this algorithm, the relationship given

above in (1) between Z(s) and the various median polish effects is preserved at every step.

Example: To see how this works, consider the following 3x3 lattice of magnesium values

considered in the discussion of cross-functions. Perform a median polish on these values.

5 6 5

5 4 6

3 4 5

Performing Median Polish in R: To illustrate how to perform median polish in R, re-

consider the coal ash percentage data from the first week of class. Here, 208 coal ash

percentages were measured over the Robena Mine Property in Greene County, PA. A data

posting is given below:
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Coal Ash Percentages

• From this initial posting, we noticed that there were some unusually high values in

places, and that there seemed to be a trend of larger to smaller coal ash percentages

moving roughly from the SW corner to the NE corner of the plot.
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• This trend was also examined by considering boxplots for each of the rows and columns

(shown below).
Coal Ash % Row Summaries

Coal Ash %

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

7 8 9 10 11 12 13

Coal Ash % Column Summaries

Coal Ash %

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

7 8 9 10 11 12 13

par(mfrow=c(2,1)) # Opens a 2x1 graphics window.

bwplot(y~coalash,data=coalash,subset=-50, # Creates a boxplot of the coal ash

cex=1.3,xlab="Coal Ash %", ylab="y", # values row by row (y-value),

main="Coal Ash % Row Summaries") # where the 50th value (outlier)

# has been omitted from the plot.

bwplot(x~coalash,data=coalash,subset=-50, # Creates a boxplot of the coal ash

cex=1.3,xlab="Coal Ash %", ylab="x", # values column by column (x-value),

main="Coal Ash % Column Summaries") # omitting the outlier.

• And finally, the trend could also be seen by computing the means and medians for each

row and column and displaying them as shown below.
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Means and Medians Across Rows and Columns

Although there is clearly spatial trend across this area, it is not clear that the trend would

easily be modeled by some function of the row and column coordinates. To perform a median

polish of these data to remove the underlying trend, the following R commands were issued:
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library(gstat) # Loads the "gstat" library.

data(coalash) # Selects coal ash data set from "gstat".

coal.mat <- tapply(coalash$coalash, # Creates a matrix of the raw coal ash

list(factor(coalash$x),factor # percentages according to their

(coalash$y)),function(x)x) # locations.

coal.mp <- medpolish(coal.mat, # Performs median polish on the coal ash

na.rm=T) # percentages.

• This function will return the grand median, vectors of row and column effects, and the

resulting residuals under the names: grand, row, col, & residuals. To extract the trend

or large-scale variation, we could issue the command:

coal.trend <- coal.mat - coal.mp$residuals

• One way to assess whether or not the median polish successfully removed any trend

present is to compare greyscale plots of the regions before and after the polish. The re-

sulting image plots are shown immediately below, with the corresponding R commands

following.
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par(mfrow=c(1,3)) # Creates a 1x3 graphics window.

zmin <- min(coal.mat[!is.na(coal.mat)], # Computes the minimum and maximum of

coal.trend[!is.na(coal.trend)]) # all coal ash percentages and trend

zmax <- max(coal.mat[!is.na(coal.mat)], # values, not including missing

coal.trend[!is.na(coal.trend)]) # values (!is.na).

image(x=1:max(coalash$x),y=1:max(coalash$y), # Creates a greyscale map of the coal

coal.mat,zlim=c(zmin,zmax),cex.axis=1.5, # ash %’s without interpolation.

xlab="Columns",ylab="Rows",cex.lab=1.6,col=gray.colors(12))

image.legend(9.5,3,zlim=range(coal.mat, # Puts legend on the plot with colors

na.rm=T),col=gray.colors(12)) # matching those in image statement.

title("Original Coal Ash %’s",cex.main=1.5) # Puts a title on the plot.

image(x=1:max(coalash$x),y=1:max(coalash$y), # Creates a greyscale map of the coal

coal.trend,zlim=c(zmin,zmax),cex.axis=1.5, # ash trend values w/o interpolation.

xlab="Columns",ylab="Rows",cex.lab=1.6,col=gray.colors(12))
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image.legend(9.5,3,zlim=range(coal.trend, # Puts legend on the plot with colors

na.rm=T),col=gray.colors(12)) # matching those in image statement.

title("Median Polish Trend",cex.main=1.5) # Puts a title on the plot.

image(x=1:max(coalash$x),y=1:max(coalash$y), # Creates a greyscale map of the coal

coal.mp$resid,zlim=range(coal.mp$resid, # ash residuals w/o interpolation.

na.rm=T),xlab="Columns",ylab="Rows",cex.lab=1.6,cex.axis=1.5,col=gray.colors(12))

image.legend(9.5,3,zlim=range(coal.mp$resid, # Puts legend on the plot with colors

na.rm=T),col=gray.colors(12)) # matching those in image statement.

title("Median Polish Residuals",cex.main=1.5)# Puts a title on the plot.

• One could also look at moving window statistics to see if the mean and variance of the

median polish residuals are stable.

Final Comments on Median Polish

1. The technique of median polish is generally used prior to computing the variogram

to remove any spatial trend present which is not well-described by some parsimonious

function. After this large-scale variation is removed, all subsequent spatial analysis

takes place on the median polish residuals. As estimation of the variogram presumes

a stationary mean and variance, it is generally reasonable to assume that the residuals

resulting from a median polish satisfy this property.

2. The median polish algorithm is not affected by missing data or irregular grids.

3. There are numerous other types of polishing that could be done. Instead of medians,

one might choose to polish with means (if there are no gross outliers), trimmed means,

or any type of weighted average of the data values. The basic decomposition of the

trend into grand, row, and column effects will remain the same, and the algorithm will

preserve this relationship throughout. Using medians is the most common choice due

to their general robustness to erratic data values.

4. The median polish is not guaranteed to converge, but does in certain cases (see Fink,

A.M. How to Polish off Median Polish. SIAM Journal of Scientific and Statistical

Computing, 9, 932-940 (1988), for details). For this reason, a stopping rule is often

defined for the algorithm of the form: Whenever none of the entries in the table change

by more than ǫ at a given iteration, the algorithm is terminated.

5. Removal of the trend prior to modeling the covariance structure receives mixed reviews

from users of spatial techniques. Some feel that removing the trend (i.e.: modeling

the large-scale variation) introduces bias into the resulting residuals from which the

covariance structure is extracted. This bias is a result of the choice of the trend function

or method used. However, failure to remove any underlying trends negates the validity

of the variogram due to the stationarity assumption. So, in either case, there is a

problem. One final alternative is to model the trend and the covariance structure

simultaneously, as is done with universal kriging. The difficulty here is that it is often

very hard to separate which effects are due to large-scale and small-scale variation.
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