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Part A: Introduction on high-throughput data
Experimental design
Platforms for gene expression data

Break — 10 min (questions if any)

Part B: Exponential and logs
Low level analysis

* Gene Expression Estimation
* Normalisation

Class Activity: debate.
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Today we will be learning:

Characteristics of high-throughput data and how it is produced
What we intend for OMICS

How we define high-throughput data

To define principles of experimental design and pipelines
Methods for gene expression quantification

To estimate gene expression levels from data and difference in
methods applied

To normalise the data and what it means
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High-throughput data

High-throughput data is a large amount of data collected using automated methods
and non-conventional technologies. This is to be able to perform a large number of
experiments at the same time to monitor a behavior of a system.

High throughput cell biology is the use of automation equipment with classical cell
biology techniques. This is to address biological questions that are otherwise

unattainable using conventional methods.

High-throughput biology has created a new field of biology called OMICS. 1t is a
research filed that interface between large scale biology (genome, proteome,
transcriptome), technology and computational methods.
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Characteristics of high-throughput data

What are the characteristics of high-throughput data?

* largeinsize

* Prone to many false positives (low specificity)
e Capture biological Noise

* Accurate

e Technically noisy
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Next Generation Sequencing

OMICS data is produced mainly through modern techniques for sequencing DNA.

It differs from traditional Sanger sequencing for its power of generating fast and
efficiently high-throughput data.

Next Generation Sequencing (NGS) it is a technique used to sequence millions of
small individual fragments of DNA in parallel. These segments are than mapped
onto the reference genome under study to identify:

- Genomic mutations: SNPs, Deletion Insertion and translocation

- Quantification of gene expression

- Quantification and identification of DNA methylation loci

- 3D Genome of single —cell using Hi-C, a molecular method that enables the
identification of genomic regions that are in close proximity
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Modular organisation and
highly interconnected biological system

-)\/q_. ol g iif;:‘_’.’\'*").-.—‘
Metabolic

Gene regulatory  Protein-Protein
pathway Interaction pathways

To microscopic to
macroscopic

Genetic information  |nformation j
storage == decoding ==b OutPut(Life processes)

The highly interconnected hierarchical organization and functional complexity
need a sophisticated integrated systems approach.

Journal of Experimental Botany, Vol. 66, No. 2 pp. 479-493, 2015 BMS353
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to understand biology?

Quantification of genome wide gene expression
Gene networks and target predictions

Protein-Protein Interaction Networks Biological systems

Alignment tools

Mining of large data Large Data

Accessing large data from repositories

Handling complexity

High dimensions Patterns and structures

Patterns in the data

Quantification of Uncertainty: Be able to predict _
what we cannot measure and have a theoretical Modeling
way of quantify accuracy

Computational Biology --- Bioinformatics 1353
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Tools we need

 Optimal Experimental Design — minimise the noise in the measurement
 Mathematical Models — define rules (functions) to describe processes

e Statistical tools — quantify accuracy in prediction and sensitivity in estimation
* Computational Skills — handling large amount of data in automated way

e Visualisation tools — identify patterns in the data
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The role of experimental design

Defining your research questions, keeping in mind limitation
and effective use of the data

We need to limit the uncertainty of the “unknown” by define very clear
questions. This helps to :

* reduce variability in the data.
* reducing the complexity of the data by focusing the search of information on
the questions you have in mind.

A proper experimental design MUST reflect :
* the biological questions that you are asking,

* the protocols optimised to minimise the variations in the data
* identify the limitations of the data collected.
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Pose your Research Questions
(i) experimental design
(ii) avalaibility of samples

!

Sample preparation
and QC

4

Data generation and QC of
the raw data

!

Low-Level analysis of the data
diagnostistic

!

High- Level Analysis of the data
visualisation and clustering

g

———)

e E—

FINAL TARGETS SELECTION
identificaton of novel networks

—)

1. Importance of defining your research questions,

keeping in mind limitations and effective use of
the data

2. Consistency in sample preparation, optimisation of
the samples, extensive QC of the data. LOOK at the
data generated and QC before processing

3. Choose the correct model to analyse your data,
define appropriate parameters (RNA-Seq analysis)
to get the maximum information out of your data

4. Use the best tool to visualise your data, to

discriminate, cluster and rank your significant
targets

5. Using of pathway analysis for defining novel
hypothesis that can be investigated with “specific
tools” , mathematical and experimental
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Workflow and Pipelines in our analysis

They help to define the correct implementation of the data

Makes us think on the logical steps we need to take

Our analysis can be reproduced on new data or different data

In the lab we have the task to analyse a real case study :
data collected from gPCR single-cell data

1.Reorganisation of data
QC data

. Exercise 9 and 10
2. Data transformation

3. Data analysis
normalisation

BMS353



The
| University
b)) Of

%> Sheffield. P| pe I | Nnes

All the variation and to ensure that the analysis of the data is as
reproducible as the experimental collection of samples generate the

need to define pipelines for the analysis of the data

PIPELINES: Reproducible and robust protocols for numerical
experimentations. In case of biological data they are tailored to the
system/organism under study.

HOW DO WE GET THEM?
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Gene expression estimation

Interpret and analyse the data by first understanding
where the data is coming from

Different platforms that generate gene expression:

 Two or One color spotted cDNA arrays

o Affymetrix - new Human/Mouse whole transcriptome arrays
* [llumina Arrays

 Reads— RNA-Seq and other NGS assays
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GeneChip® Array

Single stranded,
labeled RNA sample

Oligonucleotide element —

20um

Millions of copies of a specific
oligonucleotide sequence element

~ 1,000,000 different
complementary oligonucleotides

Image of Hybridised Array
BMS353



The
University
% Of

% Sheffield.

Example: HG_U133 Plus v2 Affymetrix geneChip

The sequences from which these probe sets were derived were selected from GenBank®, dbEST, and RefSeq.

A single array contains with more than 54,000 probe sets representing approximately 38,500 genes (estimated

by UniGene coverage).

70 percent of the probe sets represent subcluster assemblies containing one or more non- EST sequences. Of
the 16,737 EST-based probe sets, approximately 9,000 probe sets can now be associated with an mRNA or

other non-EST sequence.

cad gl = SSEE= SR

GEIIC e ee s seeeess s s s eeeseseeen,
" — utr  |AAAAAAAAA
-
—————— utr |AAAAAAAAA
El || H . Probesets
=XOn PM BT T

Now with new arrays HJAY.....

BMS353



2 The
%
>

University
S of
@ Sheffield.

Probe Set Notation

) Common Gene
Unique ("_s" suffix) ("_a" suffix)
Gene 1 Variant A !

s | e

Gene 1 Variant B

e oy 3wl

(“_x” suffix)

_at : probe sets are predicted to perfectly match only a single transcript

_s_at : are predicted to perfectly match multiple transcripts, which may be from
different genes

a_at : all probes in the probe set hit alternate transcript of the same gene

_Xx_at : probe sets will contain some probes that are identical or highly similar to
other sequences from different gene.

Hybridize uniformly across probe pairs to the intended target
BMS353
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~ DNA
SUR ihon exon irhron ! eon _irtron eon  3UR,
2 e pre-rRNA

‘..SL.U;R intron  exon it i exon itron eon  3UR AN

\..-...-- E__,/{ e mRNA

0 l p—— Y Y mRNA 2
T AT— AN mRNA 3

High-throughput sequencing of cDNA:

e Shared exons
* Biological variance of fragments
e Splicing variations
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Example of RNA-Seq workflow

pre—F{NA
SR ito_om  ifw em it em 3UR Y

-

fragments

— - Y

Py reference
gene

gene expressioh estimates
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lllumina HiSeq sequencer

What are we able to detect?

Mapped read count proportional to abundance of fragments

* Abundance of fragments = (gene expression) x (length)

* Problems which length? which transcripts?

e Other difficulties: mismatches, varying quality of reads, non-uniform

read distribution BMS353
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Part B
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1. Summarise to a single expression level the probe intensities for each
probe set

2. Estimate the variations introduced by
background effect
probe affinity effect

3. Some PM/MM pairs are more reliable than others
4. The signal needs to be scaled before comparing data from different arrays

How we define a measure that best represent the absolute expression
level of each gene on the chip?

2500 - 1600
] 1400
2000 1200
1500 1000 o PM
a 800 =
1000 B 600 MM
500 1 ( ] N iﬁﬁ,
Oﬂﬂﬂ OO g mm [ |
12345678 910111213141516 12345678 9101 1213 14 15 16
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The approaches

Use Statistical methods ( single point statistics)
make use of the information we have to define values that estimate
gene expression

MAS 5.
RMA - GCRMA
PLIER

Use a probabilistic approach (in Week 10- probability functions)
make use of the observed data to estimate function that have

generated that data

Estimates of gene expression will be the most probable value that
summarises the probe set
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Data transformation converts a set of data values from the format of its
original source into a new format that better suits the destination system

where the data is then manipulated/used/ mined etc...

In statistics, data transformation refers to the modification of every point in a data
set by a mathematical function.

Data transformation is most often used to change data to the appropriate form
for a particular statistical test or method.

In practice:
e calculate the gene expression as the 27{-deltaCt}
deltaCt<-sweep(Ct_full, MARGIN=2,Ct_full[1,],FUN="-")

Gene_expression=2"-deltaCt

BMS353



The
University
9 Of

& see. Data Transformation: Exponential functions

n

2
l+x+x"+...+x

y=f(x)=p =exp(x)

The number e is the Euler’s number, an irrational

Gaussian Function.
number

(x-u)’
The first few digits are: y=[f(xu0)= o2n exp(- = )
2.7182818284590452353602874713527 (and
more ...)

BMS353
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log,(xy) = logyx + log,y
log,(x/y) = logyx - logyy
log,(xn) = n log,x

log,x = log.x / log,b

y = log,x if and only if bY = x,
where x>0, b >0, and b #1.

BMS353
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1. How we define a measure that best represent the absolute
expression level of each gene on the chip?
2500 1600
0 1400
2000 1200
1500 1000 sy
a 800 =
1000 u 600 MM
400 A
500 m
0 il \ ol =
1234567 8 910111213141516 1 23 45 67 8 9 1011 1213141516

2. How we ensure that comparison across chips in unbiased?

BMS353
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Normalisation : removing bias

Why do we need to normalise the data?
1. we want to compare across chips

2. we need to ensure that all the data is equally compared across baseline
within the chip

Most methods will have normalisation step incorporated, some other will need to
perform it after gene expression estimation

Scaling — Mean and Median
Quantile

Loess (not relevant for affymetrix data and sequencing data)

BMS353
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Normalisation: scaling

The assumption that normalising using quantiles or scaling is reasonable, is based on
the assumption that “most genes don’t change”

If this underlying assumption is doubtful, then using the above methods is not
advisable.

Scaling normalisation, linearly scale the gene expression values so that the overall
mean (or median) are the same.

The median is more scale-invariant, but for the most part there is little practical
difference.

BMS353
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In statistics, quantile normalization is a technique for making two distributions
identical in statistical properties.

When we quantile-normalise a sample distribution to a reference distribution of the
same length, we align the sample distribution to the reference so to make them the
same.

Assume that the distributions of probe intensities should be completely the same
across chips.

Start with n arrays, and p probes, and form a [p,n] matrix X.

Rank first:
Sort the columns of X, so that the entries in a given row correspond to a fixed quantile
(Q2= the median==mean).

Then align:

Replace all entries in that row with their mean value.
BMS353
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Microarray Suite (MAS5.0)

o Signal = Smoothed average over PM,MM pairs
representing a gene

o Signal is always positive: Absent - Present Call

Signal Tukeszwezght(logz(PMj - IM)))
Correction for global background.- based on 11 sectors on each array

Ideal mismatch (IM) intensity calculated from MM
value and subtracted from PM.

- if MM < PM then IM = MM

- if MM > PM then IM = PM - correction value

BMS353
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MASS5: characteristics

* Not very precise

 accurate only when many replicates are available.
 Dependent strongly on MM

* Uses linear scaling normalisation
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Signal = regression-based average over PM pair representing a
gene

Signal ~ Tukey (log,(PM, - bkgd,))

. Subtract background for each array from PM

. Intensity- dependent normalisation of PM-Bkgd

Quantile normalisation :Fit all the chips to the same distribution. Scale the chips so
that they have the same mean.

. Log transform

BMS353
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* Precise

 Only works if there are replicates

e accurate only when many replicates are available.

 (Quantile normalisation flattens the tails. Only
strong sighals are detected.
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* Visualise the effect: M-A plot
M = l0go (g) .
A = l0og-s (RG)

e Correction of the intensity

dependant variations: A -

. R "

logo (ratio) = logso (G) — c(A) Y
C(A) — |ng k(A) 8 10 1i 14 16 8 10 1; 14 16
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Scatter Plot

Box Plot

MA Plot

Data Visualisation

— maximum

Log Fold Change

00 © Median: -0.00744
IR 023

T—Q3=75" percentile

—median

T~ Q1=25" percentile

T~ minimum

1 T T T
6 8 10 12

Log Abundance
1 2 3 4 5 6 7 8 9

Channel

14

10 11 12
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Class activity: debate the following questions:

1. How much do | need to know about the system that | am studying?

2. How much the technologies that are available for data collection need to to
sensitive for my system?

3. What is sensitivity and specificity?

4. In sequencing what is a reference genome and how | get it?

5. When the high-throughput approach is the correct approach for my research
guestion?

BMS353



