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Today’s	Outline	
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Today	we	will	be	learning:	

•  What	are	probabilis:c	models	and	how	they	work	on	high	throughput	
data		

•  Bayes’	Rule	

•  Uncertainty	in	probabilis:c	models	
	
•  puma:		probabilis:c	model	for	gene	expression	data	

•  Differen:al	Expression	Analysis	for	gene	expression	data		

•  The	concept	of	False	Discovery	Rate	applied	to	gene	expression	data	

•  Bioconductor	:	Open	Source	PlaKorm	for	gene	expression	data	

•  limma	package		
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Probabilis:c	Models	

These	are	models	that	represents	unknowns	in	terms	of	probability	distribu:ons	
instead	of		values	and	a	confidence	interval.	
	
For	example	if	we	assume	that	the	data	is	generated	by:	
	

we	can	measure	few	samples	of	it,	but	we	don’t	know	the	true	distribu:on:	
	

I	

A	probability	model	is	a	mathema:cal	representa:on	of	a	random	phenomenon.	It	is	
defined	by	its	sample	space,	events	within	the	sample	space,	and	probabili:es	
associated	with	each	event.		
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We	can	use	a	probability	theory	to	manipulate	those	func:ons	(probabili:es)	and	
make	inference	on	the	unknown	parameters	as	well	as	evaluate	the	uncertainty	that	
is	associated	to	their	es:mates.	In	other	words:	

Probabilis:c	Models	(cont.)	

•  We		describes	data	that	one	could	observe	from	a	system	

•  We	use	the	mathema:cs	of	probability	theory	to	express	all	 forms	of	
uncertainty	and	noise	associated	with	our	model...	

•  We	 use	 inverse	 probability	 (i.e.	 Bayes	 rule)	 to	 infer	 unknown	
quan::es,	adapt	our	models,	make	predic:ons	and	learn	from	data.	

•  They	Faithfully	represent	uncertainty	in	our	model	structure	and	parameters	and	
noise	in	our	data	

•  They	are		automated,	adap:ve	and	robust	
•  They		scale	well	to	large	data	sets	

Why	are	they	good?	
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•  Bayes	rule	tells	us	how	to	do	predict	outcomes	of	hypotheses	
from	data.	We	can	do	inference	about	hypotheses	once	we	have	
observed	the	data	

•  Learning	and	predic:on	can	be	seen	as	forms	of	inference.	If	we	
use	Bayes’	Rule	we	call	it	Bayesian	Inference		

Rev'd	Thomas	Bayes	
	(1702-1761)	

P(hypothesis | data) = P(data | hypothesis)P(hypothesis)
P(data)

P(hypothesis)	=	prior	
P(hypothesis|data)	=	posterior	
P(data|hypothesis)	=	likelihood	
P(data)	=	marginal	likelihood	

Bayes’	Rule	

Not	always	possible	to	be	computa:onal	efficient	and	likelihood	are	es:mated	
using	sampling	methods.	
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The	evolu:on	of	the	technology	for	biological	sciences	enables	us	to	apply	the	
concepts	of	uncertainty	on	complex	biological	data.		
	

Uncertainty	in	Biology	

In	biology	the	complexity	of	the	systems	is	such	that	we	cannot	measure	everything	
and	predic:ons	of	data	required	an	addi:onal	“knowledge”	to	become	meaningful.		
	
This	“knowledge”	needs	to	be	quan:fied	in	a	way	that	reflects	our	prior	knowledge	
of	the	systems	and	what	we	were	able	to	measure	(observe)	and	adjusted	once	the	
measurements	are	computed.	It	opens	the	way	to	quan:fying	uncertainty.	
		

When	we	cannot	quan:fy	the	parameters	that	are	needed	to	describe	the	system	
we	have	to	include	the	uncertainty	associated	to	this	“unknown”	in	our	model.	
	
We	use	probabilis:c	models	to	build	machines	(models	implemented	in	an	
algorithm)	that	learn	from	the	data.	This	filed	of	research	is	called	Machine	
Learning.	
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How	do	probabilis:c	model	help	in	gene	
expression	analysis?	

They	can	help	to	define	a	measure	that	best	represent	the	absolute	
expression	level	of	each	gene	on	the	chip?	
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1.	Summarise	to	a	single	expression	level	the	probe	intensi:es	for	each			
				probe	set	

2.	Es:mate	the	varia:ons	introduced	by	
	background	effect	
	probe	affinity	effect	

3.	Some	PM/MM	pairs	are	more	reliable	than	others	

We	know	that:		

4.	The	signal	needs	to	be	scaled	before	comparing	data	from	different	arrays	
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Use	Sta>s>cal	Approach	
	make	use	of	the	informa:on	we	have	to	define	values	that	es:mate		
	gene	expression	

	
	MAS	5.0	
	RMA		

	
	
Use	a	probabilis>c	approach	

	make	use	of	the	observed	data	to	es:mate	probability	func:ons	that	have		
	generated	that	data	

	
	built	a	noise	model	and	evaluate	the	uncertainty	in	the	system	
		
	Es:mates	of	gene	expression	will	be	the	most	probable	value	that		
	summarises	the	observed	values.	
		

The	approaches	
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Milo M et al,  Biochem transcation 2003 
Liu X et al, Bioinformatics 2005 
Pearson R et al, BMC Bioinformatics, 2009   

(observed) 

(observed) 

(inferred) 

Es:mate	the	distribu:on	of	the	data	and	we	learn	the	
parameters	to	define	it	from	the	data	(gamma	
distribu:ons)	
	
We	built	priors	on	the	hypothesis	(our	belief	is	that	
the	true	signal	is	gamma	distributed	
	
We	then	calculate	the	likelihood	using	the	model	
defined	by	Affymetrix		

	 	 	Signal=	PM-MM	
	
We	apply	Bayes’		rule	to	calculate	the	signal	
distribu:on	(posterior)	
	

puma	
Propaga:ng	Uncertainty	in	Microarray	Analysis	

Computa:onal	Efficient	---	we	don’t	need	to	use	sampling	methods.	
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Robust	gene	expression	es:mates	depend	on	how	well	we	are	able	to	quan:fy	the	
uncertainty.		
	
Down	stream	analysis	will	be	more	effec:ve	and	number	of	false	posi:ves	will	be	
reduced.		
	
Probability	of	Posi:ve	Log	Ra:o	|	one	sided	Bayesian	test	in	which	we	use	also	the	
variances	
	

The	advantage	of	using	uncertainty	
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•  DE	Analysis	using	a	ranking	based	on	Probabili:es	of	Posi:ve	Log	Ra:o	
	-	Ranking	–	defining	False	Discovery	Rate	(FDR)	and	q-values	using	PPLR	

•  Principal	component	analysis	(pumaPCA)	

•  Clustering	methods	with	mixture	components	(pumaClust)	

•  Linking	SNPs	and	gene	expression	to	iden:fy	func:onal	effects.	(NG)		

•  Gene	networks	–	we	are	working	on	this.			

The	advantage	of	using	uncertainty	(cont.)	

Improves	accuracy	in		High	level	Analysis:	
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Part	B	
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1.  Visualisation of the data  
 
2.  High level summary: Combine expression from replicated arrays 

•  Combine expression and uncertainty (puma)  
•  Combine information from replicates with single point statistics 
 

3.  Differential Expression Analysis: Determine differential expression 
between conditions, or between more complex contrasts such as 
interaction terms 

4.  Dimensionality reduction – Principal Component Analysis (Week 11) 

5.  Data Clustering: Cluster data taking the expression-level uncertainty into 
account (week 11)  

High	Level	Analysis:	workflow	example	
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Differen>al	expression	Analysis	

GOAL:	
Iden:fy	the	most	differen:ally	expressed	genes	across	different	condi:ons	or	cases	
and	controls.	
	
HOW:	

	 	iden:fy	a	threshold	that	“define”	differen:al	expression	
	 	 	 	FC	values	
	 	 	 	p-values	
	 	 	 		
	 	 	 		

What	happens	if	the	sample	size	is	small?	
•  	The	fold-change	becomes	very	sensi:ve	to	outliers	
•  	The	t-test	becomes	very	sensi:ve	to	small	variances	
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Given	two	gene	expression	values	x	and	y	the	fold	change	is	defined	as		
	 	 	 	 	 		
	 	 	 	 		

	
Given	two	vectors	xj	and	yj	of	gene	expression	measurements	for	
controls	and	cases	for	GENE	j,	the	fold	change	is	defined	as	

	 	 	 	 		
	
	
	
	
It	can	also	appear	as	a	difference	when	we	use	the	log	transforma:on	of	
the	data.	
	
Problem:	How	do	we	manage	replicates?	We	need	to	combine	the	data		

The	Fold	Change	

FC = x
y

FCj =
x j
yj
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High level summary: Combine expression from replicated arrays 
 
This is prior our DE and it is useful to have a representative gene expression value for 
the class you are studying : Wild Type vs Mutant; Disease vs Control.  
 

•  Combine information from replicates with single point statistics 

•  Combine expression and uncertainty (puma)  using Bayesian Inference  
 

High	Level	summary	

In	both	cases	you	need	a	measure	of	uncertainty.	
	
How	do	we	get	it	in	both	cases?	
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Differential Expression: pumaDE and PPLR  

Data	from	Choe	et	al,	Genome	Biology(2005)	

Example:	
In	differen:al	Expression	analysis	
the	goal	is	to	es:mate	genes	that	
change	across	condi:ons.	
	
What	happens	then	if	we	do	not	
evaluate	uncertainty?	

Probability of Positive Log ratio: PPLR 

Gives	the	probability	of	the	log	ra:o	(	log	
FC)	to	be	posi:ve.	

FC = log( x
y
)
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The	problem	of	Mul:ple	sampling	
small	number	of	replicates	due	to	the	high	cost	of	data	genera:on,	and	the	
need	for	a	very	large	number	of	significance	tests.	

how	can	we	determine		an	appropriate	significance	level?	
Methods	to	correct	the	significance	level	are	called	mul:ple	tests	
correc:ons	(or	mul:ple	comparisons	correc:ons)	

10,000	genes	
A.  No	DE	
B.  500	DE	
C.  Zoom	in	
D.  1000	DE	
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The	Bonferroni	correc>on	is	a	classical	correc:on	method	
the	significance	level	to	be	used	for	each	of	10	000	tests	is	0.05/10	000	=	5	x	10-6.	
	
A	fundamental	principle	of	sta:s:cal	analysis	is	that	fewer	false	posi:ves	are	
associated	with	more	false	nega:ves	(type	II	errors),	that	is,	a	higher	chance	of	
missing	truly	differen:ally	expressed	genes.	

We	need	a	more	relaxed	method	than	the	Bonferroni	correc:on.		
	
However,	one	common	problem	associated	with	the	classical	type	of	mul:ple	
tests	correc:on	is	that	it	is	difficult	to	es:mate	the	number	of	fase	posi:ve	in	
order	to	choose	the	decision	threshold		

Mul>ple	tes>ng	

Use	no	correc>on	for	mul>ple	hypotheses	is	too	op>mis>c	

Bonferroni’s	correc>on:	too	pessimis>c…	
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False	Discovery	Rate	

	An	alterna:ve	is	the	false	discovery	rate	(FDR).	
FDR	=	number	of	false	posi:ve	features/	number	of	significant	features	

false	discovery	rate	(FDR)	has	become	a	standard	for	mul:ple	tests	correc:on	
in	microarray	data	analysis.	
	
	The	idea	of	FDR	put	forward	by	Benjamini	and	Hochberg	(Benjamini	&	
Hochberg,	1995)	is	that	it	would	be	convenient	to	know	what	per	cent	of	the	
posi:ves	discovered	by	mul:ple	significance	tests	are	false	posi:ves		

NOTE:	FDR	depends	on	the	distribu:on	of	p-values	and	not	on	the	number	of	tests.	
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LIMMA:	propose	a	moderated	t-sta:s:c	
Smyth,	G.	K.	(2004).	Linear	models	and	empirical	Bayes	
methods	for	assessing	differen:al	expression	in	microarray	experiments.	
Sta:s:cal	Applica:ons	in	Gene:cs	and	Molecular	Biology	3,	No.	1,	
	
	
PPLR	–puma:	This	model	takes	into	account	both	the	technical	and	the	
biological	variance	and	significance	of	differen:al	expression	can	then	be	evaluated	
by	calcula:ng	probabili:es.	
	
	
	

		
	

Then	What	do	we	do	in	prac:ce?	
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False	Discovery	Rate	

10,000	genes	
A.  No	DE	
B.  500	DE	
C.  Zoom	in	
D.  1000	DE	

TP:456	
FP:300	

when	a	significance	level	of	0.03	is	used,	the	FDR	=	300/756	=	0.40.	Now	we	know	
that	on	average	40%	of	756	genes	are	false	posi:ves	

if	we	use	a	significance	level	of	0.01	(green	line),	the	number	of	true	posi:ves	is	
380,	and	the	number	of	false	posi:ves	is	100,	so	the	FDR	=	0.21	

At	a	significance	level	of	0.0007321	the	FDR	=	0.05,	which	corresponds	to		(on	average)	
141.5	true	posi:ves	and	7.5	false	posi:ves	–	with	Bonferroni	an	average	of	3	true	
posi:ves	and	no	false	posi:ves.	



BMS353	

Bioconductor	
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Bioconductor	(cont.)	

•  Bioconductor	is	an	open	source	and	open	development	soqware	project,	many	
packages	are	added	and	updated	very	frequently.	

	
•  Some	of	them	are	'personal	selec:on’	based	on	what	is	my	experience	in	

teaching	and	research.		

•  To	obtain	a	broad	overview	of	available	Bioconductor	packages,	it	is	strongly	
recommended	to	consult	its	official	project	site	and	remember	always	to	check	
on	updates.		

•  It	is	absolutely	cri:cal	to	use	the	original	documenta:on	of	each	package	(PDF	
manual	or	vignere)	as	primary	source	of	documenta:on.	



BMS353	

Affy	Packages	
These	are	the	key	packages	for	the	analysis	of	affymetrix	microarray	data.	
Affy	
The	Affy	package	provides	the	basic	single	point	sta:s:cs	methods	for	analysing	
affymetrix	oligonucleo:de	arrays	
	 	 	Obtaining	log	transformed	expression	values	with	3	different	methods	 	

	 	(MAS5,	RMA,	GCRMA)	
	
Puma	Packages	
These	are	the	packages	for	the	analysis	of	affymetrix	microarray	data	with	
probabilis:c	methods.	
	
	

Bioconductor	(cont.)	

The	gene	expression	levels	are	stored	in	what	is	called	Expression	set	and	the	
experimental	design	in	what	is	called	Pheno	Data	
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Analysis	of	Differen>ally	Expressed	Genes	
	
Limma	
	
Limma	is	a	soqware	package	for	the	analysis	of	gene	expression	microarray	data,	
that	make	use	of	linear	models	for	analysing	designed	experiments	and	the	
assessment	of	differen:al	expression.		
	
The	differen:al	expression	methods	apply	to	all	array	plaKorms	and	treat	
Affymetrix,	single	channel	and	two	channel	experiments	in	a	unified	way.		
	
Refer	to	the	limma	manual	for	examples	and	methods.		

Visualiza>on	and	quality	controls	

We	will	use	hist(),	boxplot()	and	mva.plot()	and	the	limma	version	to	visualise	
the	data	from	the	expression	sets.		
	

Differen:al	Expression:	limma	
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Limma	requires	two	matrices	are	specified:	
•  the	design	matrix	which	provides	a	representa:on	of	the	different	RNA	targets	

which	have	been	hybridized	to	the	arrays.		
	
•  the	contrast	matrix	which	defined	the	combina:on	of	comparisons	(contrasts).	For	

very	simple	experiments	the	contrast	matrix	may	not	need	to	be	specified	
explicitly.	
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How	do	we	use	limma?	

Fist	step	:	
	define	the	matrices	
	
Second	step:	
Fit	a	linear	model	to	explain	the	rela:on	between	each	gene	on	the	array	and	the	
design	matrix	
		
	
	
	Where	yi	is	the	gene	expression	for	gene	i,	X	is	the	design	matrix	and	αi	is	the	
coefficient	for	the	gene	i	

E(yi ) = Xαi

Third	Step:	define	significance	levels	for	the	comparisons.	We	use	an	empirical	
Bayes		t-test,	to	calculate	the	p-values.	This	is	to	ensure	that	the	informa:on	is	
learned	from	the	data	as	a	whole	rather	than	single	point.	

Fourth	Step:	Select	the	significant	targets	and	visualise	the	data	
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Summary		

We	have	seen	today	how	to	es:mate	gene	expression	
		
	 	 	single	point	sta:s:cs	
	 	 	probabilis:c	models	
	 	 	Uncertainty	and	how	we	can	use	it	

	
Differen:al	Expression	Analysis	

	 	 		
	 	 	p-values	and	their	problems	with	gene	expression	data	
	 	 	False	Discovery	Rate	
	 	 		

Bioconductor	Project	
	
limma	for	Differen:al	Expression	 	 	 		


