
Data	Handling:	BMS109	

Introduc)on	to	Data	Handling	in	R			
(BMS	109)	
Week6	

Data	Handling:	BMS109	

•  Box	plot	with	ggplot	using	iris	data	
		
•  PoDng	blood	data	charts	with	ggplot		

•  ScaFer	plot	
•  Box	plot	
•  Bar	Chart	
•  Histograms	

•  Represen)ng	basic	sta)s)cs	with	ploDng	

•  Final	layout	of	figures	

Today	you	will	learn	

Data	Handling:	BMS109	

SeDng	up	

•  Set	you	working	directory		
	
•  Open	a	new	script,	name	it	and	save	it	

•  Prepare	your	work	space	to	use	ggplot2	with	library()	

•  Bring	the	iris	data	set	in	your	work	space	with	data()	

	
•  Read	the	“Blood_osmosity	.csv”	data	and	assign	it	to	a	name.	Use	read.csv()	
	
		

Data	Handling:	BMS109	

Recap	of	ploDng	figures	
When	building	the	plot	we	have	paid	aFen)on	to	three	main	aspects:	

•  	 Data				(DATA)	

•  	 Visual	marks	to	represents	the	data	points		(MAPPING)	
	
•  	 Coordinate	system		(GEOMETRY	FUNCTIONS)	

-  Lines/curves	
-  Box	
-  Points	

	
	
what	the	package	ggplot2		is	based	of	this	concepts	of	layers	to	build	plots.		
We	add	layers	to	the	basic	template	with	the	+	
	
To	build	a	ggplot,	we	will	use	the	following	basic	template	:	
	
ggplot(data	=	<DATA>,	mapping	=	aes(<MAPPINGS>))	+		<GEOM_FUNCTION>()	
	

Data	Handling:	BMS109	

Box	plots	summarise	the	distribu)ons	of	a	variable	using	quar)les	
	
Each	boxplot	shows	us:	
•  the	group	median	(horizontal	bold	line)		
•  the	interquar)le	range	(the	size	of	the	box	”)		
•  the	range	of	the	rest	of	the	data	(the	ver)cal	lines:	"whiskers”)	
•  the	outliers	

Box	Plots	

We	can	use	the	geom_	func)on	geom_boxplot()	to	draw	them	in	ggplot		

ggplot_iris<-ggplot(iris, aes(x = Species, y = Petal.Length/Petal.Width,
color = Species)) +
 geom_boxplot() +
 labs(x = "Species", y = "Petal Eccentricty", color= "Species”)

ggplot_iris

Change	color	with	fill	what	happens?	
What	if	we	add	theme_classic()	as	extra	layer?	

Data	Handling:	BMS109	

SpliDng	the	print	area	

In	ggplot	we	cannot	use	the	classic	approach	with	par()	.	We	need	to	split	the	area	
using	another	package	called	cowplot	
	
Install	the	package		install.packages(“cowplot”)	
then	run	library(cowplot)	
	

Exercise:		
	
Calculate	the	eccentricity	of	Petals	as	before	and	of	Sepals.	Plot	the	two	boxplots	
side	by	side	using		
	
plot_grid(ggplot_iris1, ggplot_iris2, labels = c("a)", "b)"))
	

Data	Handling:	BMS109	

ggplot_iris1<-ggplot(iris, aes(x = Species, y = Petal.Length/
Petal.Width, fill = Species)) +
 geom_boxplot() +
 labs(x = "Species", y = "Petal Eccentricty", fill= "Species") +
 theme_classic()

ggplot_iris2<-ggplot(iris, aes(x = Species, y = Sepal.Length/
Sepal.Width, fill=Species)) +
 geom_boxplot() +
 labs(x = "Species", y = "Sepal Eccentricty") +
 theme_classic()

plot_grid(ggplot_iris1, ggplot_iris2, labels = c("a)", "b)"))

SpliDng	the	print	area	

You	can	use	the	same	template	to	look	at	the	blood	data,	with	y=sample.A	in	one	plot	
and	y=sample.B	in	the	other.	

Data	Handling:	BMS109	

When	we	need	to	to	summarise	differences	in	summary	sta)s)cs	(like	the	mean)	
among	groups,	we	use	bar	plots.	They	are	par)cularly	effec)ve	in	grouped	data.		
	
In	ggplot	we	can	use	geom_bar	to	make	barplots.		Note:	it	we	use	geom_bar	on	full	
data	it	will	display	the	the	number	of	observa)ons	in	each	group	

Bar	plots	

ggplot(blood_data, aes(x = factor(Group))) +
 geom_bar() +
 labs(x = "Group", y = "Number of measurements")

Data	Handling:	BMS109	

Bar	plots	with	group	means	

To	display	the	means	of	the	groups	we	first	need	to	calculate	them.		We	can	do	it	in	R	
using	classic	approach	with	:	
		

sampleA.mean <- summarise(group_by(blood_data, Group),

mean.SampleA = mean(sample.A))
sampleB.mean <- summarise(group_by(blood_data, Group),

mean.SampleB = mean(sample.B))

mean.blood_data <- data.frame(blood_data$Group,
 sampleA.mean$mean.SampleA, sampleB.mean$mean.SampleB)
mean.blood_data

There	is	another	way	without	using	nested	func)on.	This	is	done	with	the	dplyr	
methods	that	uses	the	concept	of	chaining	or	pipes		
	
library(dplyr)	
If	not	install.packages(“dplyr”)	

Data	Handling:	BMS109	

The	dplyr	package	includes	a	special	operator,	called	the	pipe.	To	use	this	operator	
you	need	to	combine	%	and	>	like	this:	%>%.		
	
This	allows	us	to	avoid	storing	intermediate	results	or	nes)ng	func)ons.		
	
If	you	remember	the	first	example	for	the	rounding	a	number	aher	sqrt()	we	did:	
	
x<-	5	
x<-sqrt(5)	
x<-	round(x,2)	
	
x<-round(sqrt(5),2)	
	
5	%>%	sqrt()	%>%	round(2)	

Using	dplyr	

Data	Handling:	BMS109	

Bar	plots	with	group	means	-	dplyr	

step 1 calculate the means
bdA_stats <-
 blood_data %>%
 group_by(Group) %>%
 summarise(mean_bdA = mean(sample.A))

step 2 plot the data

bd_sA<-ggplot(bdA_stats, aes(x = Group, y = mean_bdA)) +
 geom_col(fill="lightblue") +
 labs(y = "Blood Osmolarity (mg)", title = "Sample A”)+
 theme(plot.title = element_text(hjust = 0.5))+
 theme_classic()

Exercise:	
do	the	same	with	sample	B	an	use	plot	them	side	by	side	

Data	Handling:	BMS109	

bdB_stats	<-		
		blood_data	%>%	
		group_by(Group)	%>%		
		summarise(mean_bdB	=	mean(sample.B))	
	
#	step	2		
bd_sB<-ggplot(bdB_stats,	aes(x	=	Group,	y	=	mean_bdB))	+		
		geom_col(fill="lightgreen")	+		
		labs(y	=	"Blood	Osmolarity	(mg)",)tle	=	"Sample	B")+	
		theme_classic()	
	
plot_grid(bd_sA,	bd_sB,	labels	=	c("a)",	"b)"))	

Bar	plots	with	group	means	–	dplyr	(cont…)	

Data	Handling:	BMS109	

Adding	Error	bars	to	plots	

The	standard	error	is	one	op)on	here:	
	
																										Standard	Error=	
	
	
We	need	to	include	a	calcula)on	of	the	standard	errors	along	with	the	means	in	
our	chain:	

	Standard	Devia)on	

Sample	Size	√‾‾‾‾‾‾‾‾‾‾‾	‾‾‾‾‾‾‾‾‾‾‾	

When	we	describe	data	using	descrip)ve	sta)s)cs	like	the	mean,	we	would	always	
need	to	show	how	these	data	is	dispersed	around	the	mean.	
This	is	by	adding	the	Standard	error	to	the	plots.	

bdA_stats <-
 blood_data %>%
 group_by(Group) %>%
 summarise(mean_bdA = mean(sample.A),
 se = sd(sample.A) / sqrt(n())) # <- New calculation

Data	Handling:	BMS109	

bd_sA<-ggplot(bdA_stats,
 aes(x = Group, y = mean_bdA,
 ymin = mean_bdA - se, ymax = mean_bdA + se)) +
 geom_col(fill = "lightblue", width = 0.7) +
 geom_errorbar(width = 0.25) +
 labs(y = "Blood Osmolarity (mg)", title = "Sample A")+
 theme_classic()

Adding	Error	bars	to	plots	(cont…)	

Exercise:	
Repeat	the	previous	
exercise	WITH	SAMPLE	
B,	add	the	error	bars	to	
the	plots	and	print	side	
by	side.	

Data	Handling:	BMS109	

Histograms	

To estimate this distribution we proceed in the same way as the
bar chart but we first grouping the observations. This consists in
choosing a set of contiguous non-overlapping intervals, called
class intervals (or bins), the observations can be grouped to form
a discrete variable from the continuous variable.

It	is	an	es)mate	of	the	probability	distribu@on	of	a	con)nuous	variable	(quan)ta)ve	
variable)	and	was	first	introduced	by	Karl	Pearson	

Histograms	give	a	rough	sense	of	the	density	of	the	underlying	distribu)on	of	
the	data	and	ohen	are	used	as	density	es)mators	(to	es)mate	the	probability	
density	func@on	of	the	underlying	variable)	

Data	Handling:	BMS109	

######### histograms with density ############
semi transparent SAMPLEA
pA<-ggplot(blood_data, aes(x=sample.A, fill=Group, color=Group)) +
 geom_histogram(aes(y= ..density..), alpha=0.5, binwidth = 5)+
 theme(axis.text.x = element_text(size= 10, angle = 90))+
 geom_density(alpha=.2, fill="#FF6666")+ # Overlay with transparent
density plot
 labs(x="Osmolarity", title="Sample A")+
 facet_grid(Group ~ .)

pB<-ggplot(blood_data, aes(x=sample.B, fill=Group, color=Group)) +
 geom_histogram(aes(y= ..density..), alpha=0.5, binwidth = 5)+
 theme(axis.text.x = element_text(size= 10, angle = 90))+
 geom_density(alpha=.2, fill="#FF6666")+ # Overlay with transparent
density plot
 labs(x="Osmolarity", title="Sample B")+
 theme(axis.text.x = element_text(angle = 90))+
 facet_grid(Group ~ .)

plot_grid(pA, pB, labels = c("a)", "b)"))

PloDng	histograms	for	blood	data		

Data	Handling:	BMS109	

Dots	and	lines	plots	

data(ChickWeight)	
	
##	Calculate	the	mean	and	standard	errors	for	each	diet	at	each)me	point	
pltdata<-	group_by(ChickWeight,	Time,	Diet)	%>%		
		summarise(mn	=	mean(weight),	se	=	sd(weight)/sqrt(n()))	
	
##	Plot	the	means	over)me	-	remembering	to	colour	by	the	diet	
plta	<-	ggplot(pltdata,	aes(x=Time,	y	=	mn,	colour	=	Diet))	+		
		geom_point()	+		
		geom_line()	+	##	func)on	for	adding	lines	to	our	plot	
		theme_classic()	+		
		labs(y	=	"Mean	weight	(g)",	x	=	"Time	(days)")	
plta	

Some)mes	it	is	effec)ve	to	be	able	to	see	a	trend	in	a)me	series	data.	This	can	
be	achieved	using	a	dot-line	plot	

Data	Handling:	BMS109	

##	Filter	the	summary	data	to	only	include	the	final	weights	
pltdata2	<-	ungroup(pltdata)	%>%		
		filter(Time==max(Time))	
pltdata2	
	
##	Make	a	bar	plot	of	the	means	and	standard	errors	
pltb	<-	ggplot(pltdata2,	aes(x=Diet,	y	=	mn,	ymin	=	mn-se,	ymax	=	mn+se))	+		
		geom_col(fill	=	'cornflowerblue',	colour	=	"black")	+		
		geom_errorbar(width	=	0.3)	+		
		labs(y	=	"Final	weight	(g)")	+		
		theme_classic()	
pltb	

Exercise		
	
Print	everything	side	by	side	and	discuss	it		

Data	Handling:	BMS109	

•  Each	plot	helps	to	visualise	different	aspect	of	the	data	

•  A	good	plot	depends	on	good	data	

•  Interpre)ng	well	your	plot	depends	on	how	well	you	know	the	underlying	
concepts	of	the	plots	you	used	

•  Choose	the	correct	plot	not	just	the	one	that	looks	beFer	

WELL	DONE	FOR	GETTING	HERE	!!!	

