
Data	Handling:	BMS109	

Introduc)on	to	Data	Handling	in	R			
(BMS	109)	
Week5	

Data	Handling:	BMS109	

•  Checking	your	imported	data		

•  PoDng	blood	data	charts	with	basic	ploDng		
•  ScaHer	plot	
•  Box	plot	

•  Introduc)on	to	ggplot		
•  SeDng	the	workflow	for	ggplot	

•  Prepara)on	to	ploDng	with	ggplot	
•  Use	iris	data	
•  Use	your	imported	data	
•  Comapring	ggplot	with	basic	ploDng	commands	

Today	you	will	learn	

Data	Handling:	BMS109	

	
The	working	directory	is	a	default	loca)on	where	R	looks	for	files	you	want	to	
use.	It	is	just	a	folder	on	your	computer.	
	
SeDng	your	working	directory	is	essen)al	to	find	your	data	and	your	scripts.	It	
is	Good	Prac+ce	to	do	so	every+me	you	start	Rstudio.		
	
We	can	import/export	data		into/from	our	work	space	using	CSV	files	and	the	
func)ons	read.csv()	and	write.csv()	
	
We	will	use	CSV	(Comma	Delimited)	type	when	save	files	from	Excel	to	be	
imported	in	R.	Once	read	into	the	work	space	they	will	be	of	type	data.frame	
	
Similarly	we	will	export	data.frame	objects	in	files	.csv	

Recap	from	last	week	

Data	Handling:	BMS109	

Export	data	

In	R	we	can	export	data	in	a	csv	format	aVer	analysis	using	a	command	write.csv()	
	
All	data	needs	to	be	in	data	frame	before	expor)ng.	Also	make	sure	you	have	clear	
column	names	(explore	colnames())	and	row	names	(explore	rownames())	
	
Let	assume	that	our	blood_data	is	ready	to	be	exported:		

write.csv(blood_data, file="Blod_data1.csv")

Your	data	will	be	save	in	the	current	working	directory	

Data	Handling:	BMS109	

SeDng	up	

•  Set	you	working	directory		
	
•  Open	a	new	script,	name	it	and	save	it	
	
•  Read	the	“Blood_osmosity	.csv”	data	in	your	work	space	
	
	
	
	
	
•  Check	the	data,	using	the	func)on	str()	

•  Comment	briefly	what	you	find	
		

blood_data <- read.csv(”Blood_osmosity.csv",
 stringsAsFactors = TRUE) #we need Groups as factors for unclass()

blood_data

> str(blood_data)

Data	Handling:	BMS109	

PloDng	Blood	Data		

Exercise:	
Plot	the	data	you	have	imported	using	plot()	as	last	week.		
sampleA	vs	sampleB	and	use	the	color	to	dis)nguish	the	groups.	Add	the	legend.		

scatter plots
plot(blood_data$sampleA, blood_data$sampleB, pch=21,
 bg=c("red","green3","blue")[unclass(blood_data$Group)],
 xlab="Sample A", ylab="Sample B", main="Blood osmolarity")

legend(30, 300,legend=unique(blood_data$Group),
col=c("red","green3","blue"), pch = 19,
 cex=0.8,title="Species", text.font=4)

Data	Handling:	BMS109	

Blood	Data	scaHer	plot		

Data	Handling:	BMS109	

Blood	Data	box	plot		

A	box	plot	is	a	graphical	representa)on	of	groups	of	numerical	data	through	
their	quar)les	(25%,	50%,	75%	of	the	full	popula)on)	.		
	
Box	plots	may	also	have	lines	extending	ver)cally	from	the	boxes	(whiskers)	
indica)ng	variability	outside	the	upper	(75%)	and	lower	(25%)	quar)les.		
	
	
The	bold	line	represents	the	median	of	the	samples.	Outliers	may	be	ploHed	
as	individual	points.			
	
We	can	draw	them	using	the	func)on	boxplot().	It	wants	in	input	a	“data	
table”,	therefore	we	need	to	use	the	data	frame	as	a	table	(remember	use	of	
[,]	for	data	frames.		

Data	Handling:	BMS109	

Blood	Data	box	plot	(cont…)		

Data	Handling:	BMS109	

par(mfrow=c(1,3))

boxplot(blood_data[blood_data$Group=="alpha",2:3],
 col='red', ylim=c(0,260),
 main="Group Alpha")

boxplot(blood_data[blood_data$Group=="beta",2:3],
 col='green', ylim=c(0,260),
 main="Group Beta")

boxplot(blood_data[blood_data$Group=="gamma",2:3],
 col='blue',ylim=c(0,260),
 main="Group Gamma")

Blood	Data	box	plot	in	groups		

Data	Handling:	BMS109	

Blood	Data	box	plot	in	groups		

Data	Handling:	BMS109	

PloDng	figures	

When	building	the	plot	we	have	paid	aHen)on	to	three	main	aspects:	

•  	 Data				(DATA)	

•  	 Visual	marks	to	represents	the	data	points		(MAPPING)	
	
•  	 Coordinate	system		(GEOMETRY	FUNCTIONS)	

-  Lines/curves	
-  Box	
-  Points	

	
	

The	data	frame	is	always	something	that	we	cannot	change	and	the	markers	oVen	
depends	on	the	type	of	data	and	the	size	of	the	data	frame.		
We	can	add	then	another	layer.	This	is	how	we	represent	the	data	with	different	
shapes	plots.		

There	is	another	way	to	build	the	plots,	based	of	this	concepts	of	layers.	
This		is	what	the	package	ggplot2	does.		

Data	Handling:	BMS109	

PloDng	with	ggplot2				
ggplot2	 is	 a	 ploDng	 package	 that	 simplifies	 to	 create	 complex	 plots	 from	
data	in	a	data	frame.	It	provides	a	way	for	specifying	what	variables	to	plot,		
how	they	are	displayed	and		general	visual	proper)es.	
	
	
Why	ggplot2?	It	helps	to	create	high	quality	plots	with	minimum	amount	of	
adjustments	 and	 tweaking.	 It	 makes	 it	 easier	 to	 change	 type	 of	 plots	 (i.e	
scaHer	plots	or	box	plot)	on	same	data.	
	
	
The	data	needs	to	be	in	the	a	column	for	every	variable	and	a	row	for	every	
observa)on.	

Disadvantages	of	using	ggplot2	
•  You	have	to	learn	"the	grammar"	to	use	it	well	
•  Vast	package,	can	be	in)mida)ng	
•  More	than	one	way	to	do	things	

Data	Handling:	BMS109	

ggplot2	grammar				

ggplot	graphics	are	built	step	by	step	by	adding	new	elements,	like	layers.	
	
To	build	a	ggplot,	we	will	use	the	following	basic	template	:	
	
ggplot(data	=	<DATA>,	mapping	=	aes(<MAPPINGS>))	+		<GEOM_FUNCTION>()	
	
The	three	main	steps	are:	
1.  Choose	the	data		

2.  Define	a	mapping	(using	the	aesthe+c	(aes)	func)on),	by	selec)ng	the	variables	to	be	
ploHed	and	specifying	how	to	present	them	in	the	graph,	e.g.	as	x/y	posi)ons	or	
characteris)cs	such	as	size,	shape,	color,	etc.	

3.  Add	‘geoms’	–	graphical	representa)ons	of	the	data	in	the	plot	(points,	lines,	bars).		
	`geom_point()`	for	scaHer	plots,	dot	plots,	etc.	
	`geom_boxplot()`	for,	well,	boxplots!	
	`geom_line()`	for	trend	lines,)me	series,	etc.			

	
To	add	a	geom	to	the	plot	use	the	+	operator.	

Data	Handling:	BMS109	

library(ggplot2) # if not working use install.packages("ggplot2")
data("iris")

set up the main structure
ggplot_iris <- ggplot(iris, aes(x = iris$Sepal.Length, y = iris
$Petal.Length))

Add a layer using the point 'geom'…
ggplot_iris <- ggplot_iris + geom_point()

#Show the plot–just 'print' the object to the console
ggplot_iris

ggplot	Example				

What	about	the	colors	of	the	Species?	
Modify	the	aes	adding	the	parameter	color	

ggplot_iris <- ggplot(iris, aes(x = iris$Sepal.Length, y = iris
$Petal.Length, color=iris$Species))

Data	Handling:	BMS109	

ggplot	Example				
What	about	changing	labels	for	the	axis	and	legend	+tle?	
	
Add	a	new	layer	+labs()		

Ggplot_iris <- ggplot_iris + geom_point() +
labs(x= "Sepal Length", y="Petal Length”, color=“Species”)

Excerise	
	
Repeat	the	same	for	the	width	of	Sepal	and	Petal	

Add	a	plot	+tle	

labs(x= "Sepal Length", y="Petal Length”,
color=“Species”, title=“ Iris Data”)

labs(x= "Sepal Length", y="Petal Length”,
color=“Species”, title=“ Iris Data”) +
theme(plot.title = element_text(hjust = 0.5))

Data	Handling:	BMS109	

Before	you	go	

Comment	well	your	script.	
	
Save	your	.R		file		
	
Close	Rstudio		
	
Log	off		
	

