
Data	Handling:	BMS109	

Introduc)on	to	Data	Handling	in	R			
(BMS	109)	
Week4	

Data	Handling:	BMS109	

•  Matrix	opera)ons	

•  Data	frame	–	organisa)on	of	data	in	tables	

•  Extrac)ng	data	from	data	frames	

•  Prepara)on	to	ploGng		
•  Import	data	from	datasets	

•  SeGng	your	environment	
•  Import/export	data	from/to	files	

	

Today	you	will	learn	

Data	Handling:	BMS109	

We	can	organise	our	data	in	a	table	with	rows	and	columns,	that	is	called	matrix.		
	
We	use	the	command	matrix(),	to	create	a	matrix	or	rearrange	a	set	of	data.	
matrix() needs	the	data,	nrow,	ncol.	For	example:		
	
	
	
	
	
	
	
	
	
	
	
We	can	index	the	elements	of	M	in	the	same	way	we	used	for	vectors.	The	only	
difference:	now	we	need	two	indices	in	the	square	brackets	[,]	
	
	The	first	index	corresponds	to	the	rows,	the	second	to	the	columns.	

Recap	Matrix	and	tables	

M1<- matrix(1:20, nrow = 4, ncol = 5)
 M1
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20

Data	Handling:	BMS109	

> M3<-M1[1:2,1:2]
> dim(M3)
[1] 2 2

•  The	2x2	matrix	forming	the	first	two	row	and	the	first	two	column	

•  The	first	two	rows	with	all	columns		

> M4<- M1[1:2,]
> dim(M4)
[1] 2 5

•  Second	column	missing	

> M5<- M1[-2,]
> dim(M5)
[1] 3 5

•  The	first	two	row	and	the	4	with	third	column	missing	

> M6<-M1[c(1,2,4),-3]
> dim(M6)
[1] 3 4

Recap	Matrix	and	tables	

Data	Handling:	BMS109	

Matrix	opera)ons	
Sum	of	the	matrices	
To	sum/	subtract	two	ma)ces	they	need	to	have	same	dimensions	and	you	can	use	the	
+	operator	
	
Exercise	:		Create	another	matrix	of	sequen)al	numbers	with	dimensionsions	4x5	
Sum	the	matrices	M1	and	M2	
	
	
	
			
	
	
	
	
Subtrac)on	of	matrices	
	
	

M2<- matrix(21:40, nrow = 4, ncol = 5)
M1+M2
 [,1] [,2] [,3] [,4] [,5]
[1,] 22 30 38 46 54
[2,] 24 32 40 48 56
[3,] 26 34 42 50 58
[4,] 28 36 44 52 60

M1-M2
 [,1] [,2] [,3] [,4] [,5]
[1,] -20 -20 -20 -20 -20
[2,] -20 -20 -20 -20 -20
[3,] -20 -20 -20 -20 -20
[4,] -20 -20 -20 -20 -20

Data	Handling:	BMS109	

Matrix	opera)ons	(cont…)	

Mul5plica5on	of	the	matrices.	
	
In	 order	 to	mul)ply	 S1	 and	 S2	 I	 need	 to	make	 sure	 the	dimensions	 are	 compa)ble,	
therefore	 I	need	to	transpose	(change	the	row	with	the	column)	of	one	of	 the	two.	
M1=[4x5]	 and	 M2=[4x5],	 the	 number	 of	 col	 of	 M1	 needs	 to	 be	 the	 same	 as	 the	
number	of	row	of	M2.	the	operator	we	use	is	%*%	

To	do	this	we	use	the	func)on	transpose	t()	

M2t<-t(M2)
> dim(M2t)
[1] 5 4

M1%*%M2t
 [,1] [,2] [,3] [,4]
[1,] 1465 1510 1555 1600
[2,] 1610 1660 1710 1760
[3,] 1755 1810 1865 1920
[4,] 1900 1960 2020 2080

Data	Handling:	BMS109	

Data	Frames	

A	data	frame	is	a	structure	that	help	to	hold	your	data.	It	a	place	where	you	
organise	and	store	your	data	for	analysis	and		visualisa)on.	

Data	frames	are	a	collec5on	of	vectors.	These	vectors	can	be	of	different	types	
(e.g.	numeric,	character,	logical),	but	they	must	all	be	of	the	same	length.	
	
In	R	you	can	build	data	frames,	as	you	do	from	matrices	and	vectors,	using	the	
data.frame	func)on:	
	
> mydf <- data.frame(Var1=1:4, Var2=LETTERS[1:4], Var3=c(1,2,4,8))
> mydf
 Var1 Var2 Var3
1 1 A 1
2 2 B 2
3 3 C 4
4 4 D 8

Data	frames	are	central	to	data	analysis	in	R.	They	store	in	each	vector		(or	field)	the	
data	you	want	to	analyse.		You	normally	store	data	corresponding	to	a	sta)s)cal	variable	
in	each	field	

Data	Handling:	BMS109	

We	can	create	data	frames	from	vectors	and	"force"	matrices	into	data	frames.	
	For	example	if	you	want	to	store	the	results	of	a	game	of	cards	with	four	players	in	a	
data	frame	you	can	use	the	following:	

assigning the vectors
names<- c('Bob','Claire','Luisa','Matt','Marta','Mike')
score<- c(34,82,59,72,50,100)

forcing vectors into a data frame
 game_cards<- data.frame(names,score,stringsAsFactors=FALSE)

Data	Frames	(cont	…)	

When	crea)ng	data	frames	R	turns	names	into	factors,	which	are	sta)s)cal	variables.	R	
does	this	by	default	when	crea)ng	data	frames	from	string	vectors.	We	use	
stringsAsFactors=FALSE	to	avoid	it.	

Data	Handling:	BMS109	

> game_cards
 names score
1 Bob 34
2 Claire 82
3 Luisa 59
4 Matt 72
5 Marta 50
6 Mike 100

Selec)ng	vectors	from	data	frames	

We	can	extract	a	vector	from	a	data	frame	in	a	few	different	ways:	
	
•  Using	the	name	and	the	$	operator	
•  Using	the	name	of	the	vector	inside	the	[[]]	operator,	using	quotes	
•  Using	the	posi)on	inside	the	[[]]	operator	

Data	Handling:	BMS109	

Exercise:	
	
Extract	the	vectors	“names”	with	all	three	methods.		
		
game_cards$names
[1] "Bob" "Claire" "Luisa" "Matt" "Marta" "Mike"
> game_cards[[1]]
[1] "Bob" "Claire" "Luisa" "Matt" "Marta" "Mike"
> game_cards[["names"]]
[1] "Bob" "Claire" "Luisa" "Matt" "Marta" "Mike"

We	will	only	use	$	to	extract	data	from	data	frame	in	this	sessions	

Data	frames	are	table-like	objects.		
They	have	rows	and	columns.	We	can	extract	elements	of	the	data	frame	using	the	
square	brackets	[]:	
	
> game_cards[2,2]
[1] 82
> game_cards[2,1]
[1] "Claire"

Data	Handling:	BMS109	

data	sets	stored	in		R	
The	are	many	different	data	sets	stored	in	R.	To	see	which	data	sets	are	stored	in	R,	
you	can	use	the	command	data().	This	is	an	“enviromental”	func)on.	

Once	we	have	selected	a	data	set	we	want	to	use,		
Let’s	choose	iris. How	many	rows	and	how	many	col	it	has?	
	
	
	
we	can	view	its		content	using	the	func)on	View(name_dataset)	

> View(iris)

> dim(iris)
[1] 150 5

Data	Handling:	BMS109	

We've	seen	that	View(iris)	can	be	used	to	view	a	data	frame	in	a	spreadsheet	like	view.	
There	are	many	other	func)ons	that	allow	us	to	explore	the	structure	of	a	data	frame.	
They	are	par)cularly	useful	with	large	data	sets.		
	
Exercise	
Exploring	a	data	frame		
	
Using	the	iris	data,	experiment	with	the	head,	tail,	and	str	func)ons	to	see	what	
they	do.	

Exploring	data	frames	

> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Data	Handling:	BMS109	

str(iris)
'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1
1 1 1 1 1 1 1 ...

The	factors	are	the	variables	in	the	iris	data	set	and	each	variable	has	4	measurements.	
	
We	can	start	to	visualise	the	data	in	the	iris	datasets	and	use	first	basic	commands	for	it.		
Olen	useful	is	to	plot	the	data	comparing	measures.		
	
For	this	we	use	the	basic	command	plot	

par(mfrow=c(1,2)) # splits the plotting area in two parts

plot(iris$Sepal.Length,iris$Petal.Length, xlab="Sepal Length",
ylab="Petal Length")

plot(iris$Sepal.Width,iris$Petal.Width, xlab="Sepal Length",
ylab="Petal Length")

Exploring	data	frames	(cont…)	

Data	Handling:	BMS109	

Exploring	data	frames	(cont…)	

Its	interes)ng	to	mark	or	color	in	the	points	by	species.	
	
We	can	use	a	trick	for	that	using	a	command	called	unclass	
unclass(iris$Species)
 [1] 1
1 1 1 1 1 1 1 1 1 1 1 1 1
 [49] 1 1 2
2 2 2 2 2 2 2 2 2 2 2 2 2
 [97] 2 2 2 2 3
3 3 3 3 3 3 3 3 3 3 3 3 3
[145] 3 3 3 3 3 3
attr(,"levels")
[1] "setosa" "versicolor" "virginica"

c(0,-1,-2)[unclass(iris$Species)]

We	can	add	change	the	values	associated	to	each	class	using	c()	

Data	Handling:	BMS109	

par(mfrow=c(1,1)) # make plot area in one block

plot(iris$Sepal.Length, iris$Petal.Length, pch=21,
bg=c("red","green3","blue")[unclass(iris$Species)], main="Iris
Data")

Exploring	data	frames	(cont…)	

Legend(4.5, 7, legend=unique(iris$Species),
col=c("red","green3","blue"), pch = 19, cex=0.8,
title=”Species", text.font=4)

Data	Handling:	BMS109	

	
The	working	directory	is	a	default	loca)on	where	R	looks	for	files	you	want	to	use.	It	is	
just	a	folder	on	your	computer.	
	
If	you	don't	set	the	working	directory,	R	will	do	it	for	yo,	but	needs	to	be	directed	to	the	
correct	one.	
	
YOU	should	set	the	working	directory	EVERY	5me	you	start	RStudio.	SeLng	your	
working	directory	should	be	the	first	thing	you	do.	
	
Don't	do	this	using	R	code	in	your	script,	because	it	might	be	different	next)me	you	
use	it.	Instead,	use	the	RStudio	menu	system	(easy	and	reliable).	
	
Set	your	working	directory	now	using…	Session	>	Set	Working	Directory	>	Choose	
Directory...	

Working	directory	

Data	Handling:	BMS109	

1.	Download	the	”Blood_osmosity.xlsx"	file	from	MOLE:	
	
(BMS109	>		Data	Handling	and	Visualisa)on	in	R)	
	
2.	Save	this	file	in	you	current	working	directory	
	
Make	sure	you	remember	where	you	put	it!	
	
3.	Open	up	your	copy	of	"Blood_osmosity.xlsx"	in	Excel	
	
Inspect	the	data:	
How	many	columns	("variables")	and	rows	("observa)ons")	are	there?	

Import	data	

Data	Handling:	BMS109	

STEP	1.	Export	data	from	Excel	to	a	CSV	file:	
	
Open	the	”Blood_osmosity.xlsx"	spreadsheet	up	in	Excel	
	
In	Excel	save	the	file	with	Save	As...	and	choose	the	CSV	(Comma	Delimited)	op)on	
	
Keep	the	file	name		but	change	extension	(”Blood_osmosity.csv”).	Make	sure	the	file	is	
saved	in	your	working	directory	(you	set	this	earlier)	
	
STEP	2.	Now	import	the	CSV	file	into	using	RStudio:	
	
Include	the	following	line	in	your	script	and	run	it:	
	
	
	
	

Import	data	from	Excel	

blood_data <- read.csv(”Blood_osmosity.csv", stringsAsFactors = FALSE)
blood_data

Data	Handling:	BMS109	

What	happened?	Did	you	see	any	error	messages?	If	you	did,	check	your	spelling	
and	make	sure	your	working	directory	is	set	to	the	right	place.	
	
	
What	is	the	data	that	you	imported?	Is	is	a	data	frame?	
Use	str()	to	check.	

Check	Imported	data	

> str(blood_data)
'data.frame': 55 obs. of 3 variables:
 $ Group : chr "gamma" "gamma" "gamma" "gamma" ...
 $ sampleA: num 104 118 126 120 104 196 90 95 92 106 ...
 $ sampleB: num 110 126 60 90 80 214 97 108 70 125 ...

Data	Handling:	BMS109	

Export	data	

I	r	we	can	export	data	in	a	csv	format	aler	analysis	using	a	command	write.csv()	
	
All	data	needs	to	be	in	data	frame	before	expor)ng.	Also	make	sure	you	have	clear	
column	names	(explore	colnames())	and	row	names	(explore	rownames())	
	
Let	assume	that	our	blood_data	is	ready	to	be	exported:		

write.csv(blood_data, file="Blod_data1.csv")

Your	data	will	be	save	in	the	current	working	directory	

Data	Handling:	BMS109	

Before	you	go	

Comment	well	your	script.	
	
Save	your	.R		file		
	
Close	Rstudio		
	
Log	off		
	

