
Data	Handling:	BMS109	

Introduc)on	to	Data	Handling	in	R			
(BMS	109)	
Week3	

Data	Handling:	BMS109	

•  Func)ons	in	R	

•  Handling	R	objects	(variables,	arrays	etc..)	

•  Set	arrays	of	values	and	access	them	

•  Set	matrix	and	tables	

•  Manipula)ng	tables	and	matrix	
	

Today	you	will	learn	

Data	Handling:	BMS109	

	
A		:Script	Editor	
	
B		:Global	Environment	and	History	
	
C:	Console	
	
D	:Everything	else	(e.g.	file	browser)	

Quick	recap	of	R	Studio	

A	 B	

C	 D	

1.  Open	up	RStudio	All	Programs	>	Rstudio	

2.  Maximise	the	RStudio	window	(always	do	this!)	

3.  Open	last	week	script	

Data	Handling:	BMS109	

Print	the	values	of	objects	
x <-3
y <-10
z <-15

s <-x+y+z

d <-(x-y)/z

m <-x*y*z
v <-s^4
sq <-sqrt(z-x)

s
cat("Ratio: ", d, “\n”)
print(paste("Multiplication: ", m))
print(paste("Power of 4: \n", v))
print(sq)

> s
[1] 28
> cat("Ratio: ", d,"\n")
Ratio: -0.4666667
> print(paste("Multiplication: ", m))
[1] "Multiplication: 450"
> print(paste("Power of 4: \n", v))
[1] "Power of 4: \n 614656"
> print(sq)
[1] 3.464102

Write	these	commands		in	the	newly	opened		script	and	
use	comments	to	describe	what	you	are	doing.	

Data	Handling:	BMS109	

A	func)on	in	R	is	very	much	like	a	mathema)cal	func)on.	They	(usually)	takes	
one	or	more	inputs,	does	something	to	them	and	then	returns	the	result	to	us.		
	
	
	
	
	
	
my_func_name:	the	name	of	the	func)on	(e.g.	print)	
arg1:	name	of	the	first	argument	
val1:	value	of	the	first	argument	
	
	
A	func)on	may	have	0,	1,	or	more	"arguments".	The	arguments	are	the	inputs	
(name	value	pairs)	to	the	func)on.	Remember:	name	on	the	le[,	value	of	the	
right.	

Func)ons	

my_func_name(arg1	=	val1,	arg2	=	val2,	...)	

Data	Handling:	BMS109	

Examples	of	using	func)ons	

Variables	can	contain	collec)ons	of	le]ers	called	strings.	We	manipulate	strings	
differently	from	how	we	manipulate	numbers.	We	use	commands	such	as	
paste.	For	example:	

myname <- "Marta"
Greeting <- "Ciao”

#Let's join these together using R's paste function.
#Sep determines the type of separation you want.

message <- paste(Greeting,myname,sep=" ")
print(message) # Print out the message

[1] "Ciao Marta"

Exercise	
	
Write	code	to	print	your	name,	your	email	and	the	module	code	separated	by	a	
comma.	

Data	Handling:	BMS109	

If	we	want	to	round	a	number	we	can	ask	R	to	do	this.	The	func)on	we	would	use	is		
round()
	
Round	needs	arguments,	we	start	with	one.	We	give	it	the	value	3.141593.		
	
	
	
	
	
	
We	cam	also	ask	R	for	help	and	describe	here	all	informa)on	about	the	func)on.		
	
	
	
	
The	descrip)on	appears	on	the	bo]om	right	panel		
	
	
	
You	do	not	have	to	name	arguments	in	R	–	it	will	match	them	up	by	posi)on.		

Examples	of	using	func)ons	

> round(x = 3.141593)
[1] 3
>
> x
Error: object 'x' not found

> ?round
round(x,	digits	=	0)

round(3.141593,2)	
[1]	3.14	

Data	Handling:	BMS109	

Using	func)ons	experiment	with	the	following	func)ons,	use	the	help	“?”	to	convince	
yourself	you	know	what	they	do.	Add	comments	to	explain	your	findings:	

sqrt
log
sum
seq
c
round
	
Hint:	Don't	just	use	whole	numbers.	

Exercise	

Data	Handling:	BMS109	

Vectors	
Vectors	are	the	simplest	type	of	"object"	in	R—	It	can	be	made	of	one	or	more	
elements	(values).	Can	be	numerals	or	characters,	or	strings.	
	
We	use	them	to	associate	a	row	of	values	to	the	same	name.	
	
When	we	want	to	extract	single	element	of	the	vectors	we	use	[]	and	their	posi)on.	
	
	
	
	
		
	
	
Now	let’s	take	a	look	at	what	the	symbol		:	
It	is	used	in	to	build	a	sequence	of	number	and	it	is	frequently	used	in	vectors.		
	
>	1:15	
	[1]		1		2		3		4		5		6		7		8		9	10	11	12	13	14	15	
	
We	have	build	a	sequence	of	15	numbers	

> x<-2
> x<-c(2,3)
> x
[1] 2 3

Data	Handling:	BMS109	

You	can	assign	a	set	of	values	to	an	object	and	this	can	be	in	the	form	of	a	row	of	values	
(vector)	or	a	table	(matrix).	For	example	to	build	a	vector	with	numbers	from	1	to	10	we	
can	use	any	of	the	following	methods:	
	
	
	
	
	
	
You	can	generate	random	sequences	of	number	using	commands	like	
sample(),runif()	and	rnorm().	
	
The	first	one	just	creates	a	vector	of	random	numbers	
The	second	func)on	creates	a	vector	of	uniformly	distributed	random	numbers	
The	third	func)on	creates	a	vector	of	normally	distributed	random	numbers	

x <- 1:10
x <- seq(1,10,by=1)
x <- seq(length=10,from=1,by=1)
x <- c(1,2,3,4,5,6,7,8,9,10) # c = concatenate

Vectors	(cont	…)	

The	func)on	length(x) gives	you	the	length	of	the	vector	It	is	very	useful,

Data	Handling:	BMS109	

	
Exercise:	
	Explore	the	sampling	func)ons	sample(),runif()	and	rnorm()	to	create	a	
sequence	of	10	random	integers	from	1:100.	Use	the	comments	to	describe	briefly	
what	you	are	doing	and	assign	the	outputs	of	the	func)ons	to	variables	x,y,z	
respec)vely.	For	example	you	can	use	
	
x<-sample(1:100, 10, replace=TRUE)
y<-runif(10,min=1,max=10)
z<- rnorm(10,mean=0,sd=1)
x
y
z

> x
 [1] 64 97 36 35 82 25 45 92 6 8
> y
 [1] 2.817598 9.572927 5.784630 4.687285 7.461036 1.305383 4.009328
8.185989 2.789331 2.984100
> z
 [1] -0.2387676 0.6077371 -0.2714998 -1.1619429 -0.5161393
-0.2406907 -1.5376712 -0.8294226
 [9] -1.4247751 0.8918644

Vectors	(cont…)	

Data	Handling:	BMS109	

Vectors	(cont…)	
We	access	elements	of	a	vector	using	the	[]	brackets	and	the	posi)on	of	the	
elements	we	want.			
	
For	example	if	we	want	the	fourth	element	of	x	we	write:	

> x[4]
[1] 52

Exercise	
Get	the	first,	the	second	and	the	forth	element	of	y	
	
	
	
Get	the	even	elements	of	z	(hints:	you	can	write	a	vector	of	even	numbers	in	1:10	or	
use	the	seq(2,10)		specify	by=2	

> x[c(1,2,4)]
[1] 9 27 52

> index<- seq(2,10,by=2)
> z[index]
[1] -0.2387676 -0.2714998 -0.5161393 -1.5376712
-1.4247751

Data	Handling:	BMS109	

O[en	we	need	to	organise	our	data	in	a	table	with	rows	and	columns.	Vectors	of	
rows	and	columns	are	called	matrix.		
	
We	more	o[en	use	the	command	matrix(),	to	create	a	matrix	or	rearrange	a	set	
of	data.	matrix() needs	the	data,	nrow,	ncol.	For	example:		
	
	
	
	
	
	
	
	
We	can	index	the	elements	of	M	in	the	same	way	we	used	for	vectors.	The	only	
difference:	now	we	need	two	indices	in	the	square	brackets	[,],	because	M	is	two-
dimensional.	The	first	index	corresponds	to	the	rows,	the	second	to	the	columns.	

Matrix	and	tables	

M<- matrix(x, nrow = 2, ncol = 5)
M
 [,1] [,2] [,3] [,4] [,5]
[1,] 64 36 82 45 6
[2,] 97 35 25 92 8

Data	Handling:	BMS109	

Matrix	and	tables(cont…)	

Create	new	matrix	called	M1	of	20	elements	with	nrows=4,	ncol=5	

M1<- matrix(1:20,nrow=4,ncol=5)
M1

 [,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
	
We	access	elements	of	the	matrix	specifying	the	two	indices.			For	example	to	the	
element	on	second	row	and	third	column	
M1[2,3]		
	
We	can	also	access	more	than	one	element	with	the	func)on	c()	

> M1[c(1,3,4),4]
[1] 13 15 16

Data	Handling:	BMS109	

We	also	can	skip	a	whole	column	and/or	row	by	using	the	index	with	the	minus	sign.	For	example	
if	we	want	to	skip	the	third	column	we	can	write	
	

> M2<- M1[,-3]
M2

 [,1] [,2] [,3] [,4]
[1,] 1 5 13 17
[2,] 2 6 14 18
[3,] 3 7 15 19
[4,] 4 8 16 20

Matrix	and	tables(cont…)	

What	are	the	dimensions	of	M2?	
Use	dim(M2)	to	discover	them.	Very	useful	func)on.	

>	dim(M2)	
[1]	4	4	

Data	Handling:	BMS109	

Exercise	
	
Create	from	the	matrix	M1	new	sub-matrices	using	the	instruc)on	below.	Assign	
new	names	to	each	sub-matrix	and	find	the	their	dimensions:	
	
•  The	2x2	matrix	forming	the	first	two	row	and	the	first	two	column	

•  The	first	two	rows	with	all	columns		

•  Second	column	missing	

•  The	first	two	row	and	the	4	with	third	column	missing	

Data	Handling:	BMS109	

> M3<-M1[1:2,1:2]
> dim(M3)
[1] 2 2

•  The	2x2	matrix	forming	the	first	two	row	and	the	first	two	column	

•  The	first	two	rows	with	all	columns		

> M4<- M1[1:2,]
> dim(M4)
[1] 2 5

•  Second	column	missing	

> M5<- M1[-2,]
> dim(M5)
[1] 3 5

•  The	first	two	row	and	the	4	with	third	column	missing	

> M6<-M1[c(1,2,4),-3]
> dim(M6)
[1] 3 4

Solu)ons	

Data	Handling:	BMS109	

Before	you	go	

Comment	well	your	script.	
	
Save	your	.R		file		
	
Close	Rstudio		
	
Log	off		
	

